×

On the complexity of some geometric problems with fixed parameters. (English) Zbl 1457.05111

Summary: The following graph-drawing problems are known to be complete for the existential theory of the reals (\(\exists \mathbb{R}\))-complete) as long as the parameter \(k\) is unbounded. Do they remain \(\exists \mathbb{R}\)-complete for a fixed value \(k\)?
Do \(k\) graphs on a shared vertex set have a simultaneous geometric embedding?
Is \(G\) a segment intersection graph, where \(G\) has maximum degree at most \(k\)?
Given a graph \(G\) with a rotation system and maximum degree at most \(k\), does \(G\) have a straight-line drawing which realizes the rotation system?

We show that these, and some related, problems remain \(\exists \mathbb{R}\)-complete for constant \(k\), where \(k\) is in the double or triple digits. To obtain these results we establish a new variant of Mnëv’s universality theorem, in which the gadgets are placed so as to interact minimally; this variant leads to fixed values for \(k\), where the traditional variants of the universality theorem require unbounded values of \(k\).

MSC:

05C85 Graph algorithms (graph-theoretic aspects)

References:

[1] M. Abrahamsen, T. Miltzow, and N. Seiferth.Framework for∃R-completeness of twodimensional packing problems.ArXiv e-prints, 2020.(last accessed 12/18/2020).
[2] O. Aichholzer, J. Cardinal, V. Kusters, S. Langerman, and P. Valtr. Reconstructing point set order types from radial orderings.Internat. J. Comput. Geom. Appl., 26(3-4):167-184, 2016. · Zbl 1407.68502 · doi:10.1142/S0218195916600037
[3] T. C. Biedl and M. Kaufmann. Area-efficient static and incremental graph drawings. In Algorithms—ESA ’97 (Graz), volume 1284 ofLecture Notes in Comput. Sci., pages 37-52. Springer, Berlin, 1997. · Zbl 1477.68201 · doi:10.1007/3-540-63397-9_4
[4] N. Bieker. Complexity of graph drawing problems in relation to the existential theory of the reals. Bachelor’s thesis, Karlsruher Institut f¨ur Technologie, Karlsruhe, 2020. (last accessed 12/17/2020).
[5] D. Bienstock. Some provably hard crossing number problems.Discrete Comput. Geom., 6(5):443-459, 1991. · Zbl 0765.68202 · doi:10.1007/BF02574701
[6] A. Bj¨orner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler.Oriented matroids, volume 46 ofEncyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, second edition, 1999. · Zbl 0944.52006 · doi:10.1017/CBO9780511586507
[7] P. Brass, E. Cenek, C. A. Duncan, A. Efrat, C. Erten, D. P. Ismailescu, S. G. Kobourov, A. Lubiw, and J. S. B. Mitchell. On simultaneous planar graph embeddings.Comput. Geom., 36(2):117-130, 2007. · Zbl 1105.05015 · doi:10.1016/j.comgeo.2006.05.006
[8] P. B¨urgisser and F. Cucker. Counting complexity classes for numeric computations. II. Algebraic and semialgebraic sets.J. Complexity, 22(2):147-191, 2006. · Zbl 1149.68029 · doi:10.1016/j.jco.2005.
[9] J. F. Buss, G. S. Frandsen, and J. O. Shallit. The computational complexity of some problems of linear algebra.J. Comput. System Sci., 58(3):572-596, 1999. · Zbl 0941.68059 · doi:10.1006/jcss.1998.
[10] J. Canny. Some algebraic and geometric computations in PSPACE. InSTOC ’88: Proceedings of the twentieth annual ACM symposium on Theory of computing, pages 460-469, New York, NY, USA, 1988. ACM. · doi:10.1145/62212.62257
[11] J. Cardinal and V. Kusters. The complexity of simultaneous geometric graph embedding.J. Graph Algorithms Appl., 19(1):259-272, 2015. · Zbl 1311.05128 · doi:10.7155/jgaa.00356
[12] T. M. Chan, F. Frati, C. Gutwenger, A. Lubiw, P. Mutzel, and M. Schaefer. Drawing partially embedded and simultaneously planar graphs.J. Graph Algorithms Appl., 19(2):681-706, 2015. · Zbl 1328.05130 · doi:10.7155/jgaa.00375
[13] S. Durocher, E. Gethner, and D. Mondal. Thickness and colorability of geometric graphs. Comput. Geom., 56:1-18, 2016. · Zbl 1384.05086
[14] A. Efrat, R. Fulek, S. Kobourov, and C. D. T´oth. Polygons with prescribed angles in 2D and 3D. In28th International Symposium on Graph Drawing and Network Visualization, GD’20 (Vancouver, BC), 2020.
[15] J. Erickson, I. van der Hoog, and T. Miltzow. Smoothing the gap between NP and∃R. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 1022-1033. IEEE, 2020. · doi:10.1109/FOCS46700.
[16] A. Estrella-Balderrama, E. Gassner, M. J¨unger, M. Percan, M. Schaefer, and M. Schulz. Simultaneous geometric graph embeddings. InGraph drawing, volume 4875 ofLecture Notes in Comput. Sci., pages 280-290. Springer, Berlin, 2008. · Zbl 1137.68481 · doi:10.1007/978-3-540-77537-9_28
[17] A. Garg and R. Tamassia. On the computational complexity of upward and rectilinear planarity testing.SIAM J. Comput., 31(2):601-625, 2001. · Zbl 0996.68130 · doi:10.1137/S0097539794277123
[18] L. Grilli, S.-H. Hong, J. Kratochv´ıl, and I. Rutter. Drawing simultaneously embedded graphs with few bends. InGraph drawing, volume 8871 ofLecture Notes in Comput. Sci., pages 40-51. Springer, Heidelberg, 2014. · Zbl 1426.68212 · doi:10.1007/978-3-662-45803-7_4
[19] P. Hlinˇen´y and J. Kratochv´ıl. Representing graphs by disks and balls (a survey of recognitioncomplexity results).Discrete Math., 229:101-124, 2001. · Zbl 0969.68118 · doi:10.1016/S0012-365X(00)
[20] U. Hoffmann. On the complexity of the planar slope number problem.J. Graph Algorithms Appl., 21(2):183-193, 2017. · Zbl 1358.05078 · doi:10.7155/jgaa.00411
[21] B. Jaggi, P. Mani-Levitska, B. Sturmfels, and N. White. Uniform oriented matroids without the isotopy property.Discrete Comput. Geom., 4(2):97-100, 1989. · Zbl 0675.05017 · doi:10.1007/BF02187717
[22] R. J. Kang and T. M¨uller. Sphere and dot product representations of graphs.Discrete Comput. Geom., 47(3):548-568, 2012. · Zbl 1238.05180 · doi:10.1007/s00454-012-9394-8
[23] J. Kratochv´ıl and J. Matouˇsek. NP-hardness results for intersection graphs.Comment. Math. Univ. Carolin., 30(4):761-773, 1989. · Zbl 0697.05052
[24] J. Kynˇcl. Simple realizability of complete abstract topological graphs in P.Discrete Comput. Geom., 45(3):383-399, 2011. · Zbl 1214.05013 · doi:10.1007/s00454-010-9320-x
[25] J. Kynˇcl. Simple realizability of complete abstract topological graphs simplified.Discrete Comput. Geom., 64(1):1-27, 2020. · Zbl 1508.05042 · doi:10.1007/s00454-020-00204-0
[26] M. Las Vergnas. Order properties of lines in the plane and a conjecture of G. Ringel.J. Combin. Theory Ser. B, 41(2):246-249, 1986. · Zbl 0665.05003 · doi:10.1016/0095-8956(86)90048-1
[27] J. Matouˇsek. Intersection graphs of segments and∃R.ArXiv e-prints, 2014. (last accessed 6/10/2020).
[28] N. E. Mn¨ev. The universality theorems on the classification problem of configuration varieties and convex polytopes varieties. InTopology and geometry—Rohlin Seminar, volume 1346 of Lecture Notes in Math., pages 527-543. Springer, Berlin, 1988. · Zbl 0667.52006 · doi:10.1007/BFb0082792
[29] J. Richter-Gebert. Mn¨ev’s universality theorem revisited.S´em. Lothar. Combin., 34:15, 1995. · Zbl 0855.05041
[30] M. Schaefer. Complexity of some geometric and topological problems. InGraph drawing, volume 5849 ofLecture Notes in Comput. Sci., pages 334-344. Springer, Berlin, 2010. · Zbl 1284.68305
[31] M. Schaefer. Complexity of geometrick-planarity for fixedk.J. Graph Algorithms Appl., 25(1):29-41, 2021. · Zbl 1452.05180 · doi:10.7155/jgaa.00548
[32] M. Schaefer and D. ˇStefankoviˇc. Fixed points, Nash equilibria, and the existential theory of the reals.Theory Comput. Syst., 60(2):172-193, 2017. · Zbl 1362.68088 · doi:10.1007/s00224-015-9662-0
[33] P. W. Shor. Stretchability of pseudolines is NP-hard. InApplied geometry and discrete mathematics, volume 4 ofDIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 531- 554. Amer. Math. Soc., Providence, RI, 1991. · Zbl 0751.05023 · doi:10.1090/dimacs/004/41
[34] Wikipedia contributors. Existential theory of the reals — Wikipedia, the free encyclopedia, 2020. (last accessed 12/17/2020). IntroductionPartial Order Type RealizabilityRadial Orderings and Radial SystemsSimultaneous Geometric EmbeddingsStretchability and Intersection GraphsProof of Theorem 1Drawing in General PositionEvaluating PolynomialsVon Staudt GadgetsPutting Pieces TogetherConclusion
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.