×

Phase transition in a random minima model: mean field theory and exact solution on the Bethe lattice. (English) Zbl 1456.82386

Summary: We consider the number and distribution of minima in random landscapes defined on non-Euclidean lattices. Using an ensemble where random landscapes are reweighted by a fugacity factor z for each minimum that they contain, we construct first a ‘two-box’ mean field theory. This exhibits an ordering phase transition at \(z_c = 2\) above which one box contains an extensive number of minima. The onset of order is governed by an unusual order parameter exponent \({\beta} = 1\), motivating us to study the same model on the Bethe lattice. Here we find from an exact solution that for any connectivity \({\mu}+1>2\) there is an ordering transition with a conventional mean field order parameter exponent \({\beta} = 1/2\), but with the region where this behaviour is observable shrinking in size as \(1/{\mu}\) in the mean field limit of large \({\mu}\). We show that the behaviour in the transition region can also be understood directly within a mean field approach, by making the assignment of minima ‘soft’. Finally we demonstrate, in the simplest mean field case, how the analysis can be generalized to include both maxima and minima. In this case an additional first-order phase transition appears, to a landscape in which essentially all sites are either minima or maxima.

MSC:

82B26 Phase transitions (general) in equilibrium statistical mechanics
82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
60G50 Sums of independent random variables; random walks
82B23 Exactly solvable models; Bethe ansatz
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics

References:

[1] Barrat J-L, Feigelman M, Kurchan J and Dalibard J 2002 Slow Relaxations and Nonequilibrium Dynamics in Condensed Matter(Les Houches Session vol LXXVII) (Heidelberg: Springer)
[2] Mézard M, Parisi G and Virasoro M A 1987 Spin-glass theory and beyond Lecture Notes in Physics vol 9 (Singapore: World Scientific) · Zbl 0992.82500
[3] Wales D J 2004 Energy Landscapes: with Applications to Clusters, Biomolecules and Glasses (Cambridge: Cambridge University Press) · doi:10.1017/CBO9780511721724
[4] Weinrib A and Halperin B I 1982 Phys. Rev. B 26 1362 · doi:10.1103/PhysRevB.26.1362
[5] Gavrilets S 2004 Fitness Landscapes and the Origin of Species (Princeton, NJ: Princeton University Press)
[6] Mersini-Houghton L 2005 Class. Quantum Grav.22 3481 · Zbl 1135.83308 · doi:10.1088/0264-9381/22/17/009
[7] Susskind L 2003 arXiv:hep-th/0302219
[8] Douglas M R, Shiffman B and Zelditch S 2004 Commun. Math. Phys.252 325 · Zbl 1103.32011 · doi:10.1007/s00220-004-1228-y
[9] Aazami A and Easther R 2006 J. Cosmol. Astropart. Phys. JCAP03(2006)013 · doi:10.1088/1475-7516/2006/03/013
[10] Cavagna A, Garrahan J and Giardina I 1999 Phys. Rev. E 59 2808 · doi:10.1103/PhysRevE.59.2808
[11] Fyodorov Y V 2004 Phys. Rev. Lett.92 240601 · Zbl 1267.82055 · doi:10.1103/PhysRevLett.92.240601
[12] Fyodorov Y V 2007 Acta Phys. Polon. B 38 4139
[13] Cavagna A, Garrahan J and Giardina I 2000 Phys. Rev. B 61 3960 · doi:10.1103/PhysRevB.61.3960
[14] Dean D S and Majumdar S N 2006 Phys. Rev. Lett.97 160201 · Zbl 1228.82035 · doi:10.1103/PhysRevLett.97.160201
[15] Dean D S and Majumdar S N 2008 Phys. Rev. E 77 041108 · doi:10.1103/PhysRevE.77.041108
[16] Fyodorov Y V and Williams I 2007 J. Stat. Phys.129 1081 · Zbl 1156.82355 · doi:10.1007/s10955-007-9386-x
[17] Kac M 1943 Bull. Am. Math. Soc.49 314 · Zbl 0060.28602 · doi:10.1090/S0002-9904-1943-07912-8
[18] Rice S O 1954 Selected Papers on Noise and stochastic Processes ed N Wax (New York: Dover) · Zbl 0059.11903
[19] Belyaev K Ju 1967 Sov. Math. Dokl.8 1107
[20] Cline J M, Politzer H D, Rey S-Y and Wise M B 1987 Commun. Math. Phys.112 217 · Zbl 0634.60050 · doi:10.1007/BF01217812
[21] Adler R J and Taylor J 2007 Random Fields and Geometry (New York: Springer) · Zbl 1149.60003
[22] Bray A J and Dean D S 2007 Phys. Rev. Lett.98 150201 · doi:10.1103/PhysRevLett.98.150201
[23] Fyodorov Y V, Sommers H-J and Williams I 2007 JETP Lett.85 261 · doi:10.1134/S0021364007050098
[24] Vogel H and Mohring W 2008 J. Phys. A: Math. Theor.41 025210 · Zbl 1134.82009 · doi:10.1088/1751-8113/41/2/025210
[25] Majumdar S N and Martin O C 2006 Phys. Rev. E 74 061112 · doi:10.1103/PhysRevE.74.061112
[26] Stembridge J 1997 Trans. Am. Math. Soc.349 763 · Zbl 0863.06005 · doi:10.1090/S0002-9947-97-01804-7
[27] Oshanin G and Voituriez R 2004 J. Phys. A: Math. Gen.37 6221 · Zbl 1056.60045 · doi:10.1088/0305-4470/37/24/002
[28] Hivert F, Nechaev S, Oshanin G and Vasilyev O 2007 J. Stat. Phys.126 243 · Zbl 1111.82021 · doi:10.1007/s10955-006-9231-7
[29] Burda Z, Krzywicki A, Martin O and Tabor Z 2006 Phys. Rev. E 73 036110 · doi:10.1103/PhysRevE.73.036110
[30] Burley D M 1960 Proc. Phys. Soc. (London)75 262 · doi:10.1088/0370-1328/75/2/313
[31] Temperley H N V 1959 Proc. Phys. Soc. (London)74 183 · Zbl 0102.43504 · doi:10.1088/0370-1328/74/2/306
[32] Temperley H N V 1961 Proc. Phys. Soc. (London)77 630 · doi:10.1088/0370-1328/77/3/309
[33] Temperley H N V 1962 Proc. Phys. Soc. (London)80 813 · Zbl 0113.23504 · doi:10.1088/0370-1328/80/4/301
[34] Gaunt D S and Fisher M E 1965 J. Chem. Phys.43 2840 · doi:10.1063/1.1697217
[35] Runnels L K and Combs L L 1966 J. Chem. Phys.45 2482 · doi:10.1063/1.1727966
[36] Ree F H and Chesnut D A 1966 J. Chem. Phys.45 3983 · doi:10.1063/1.1727448
[37] Ree F H and Chesnut D A 1967 Phys. Rev. Lett.18 5 · doi:10.1103/PhysRevLett.18.5
[38] Runnels L K 1967 J. Math. Phys.8 2081 · doi:10.1063/1.1705123
[39] Derrida B 2006 unpublished
[40] Weigt M and Hartmann A K 2003 Europhys. Lett.62 533 · doi:10.1209/epl/i2003-00383-8
[41] Hansen-Goos H and Weigt M 2005 J. Stat. Mech. P04006 · Zbl 1456.82423 · doi:10.1088/1742-5468/2005/04/P04006
[42] Rivoire O, Biroli G, Martin O C and Mézard M 2004 Eur. Phys. J. B 37 55 · doi:10.1140/epjb/e2004-00030-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.