×

Connecting global and local energy distributions in quantum spin models on a lattice. (English) Zbl 1456.81320

Summary: Local interactions in many-body quantum systems are generally non-commuting and consequently the Hamiltonian of a local region cannot be measured simultaneously with the global Hamiltonian. The connection between the probability distributions of measurement outcomes of the local and global Hamiltonians will depend on the angles between the diagonalizing bases of these two Hamiltonians. In this paper we characterize the relation between these two distributions. On one hand, we upperbound the probability of measuring an energy \(\tau\) in a local region, if the global system is in a superposition of eigenstates with energies \(\epsilon <\tau \). On the other hand, we bound the probability of measuring a global energy \(\epsilon\) in a bipartite system that is in a tensor product of eigenstates of its two subsystems. Very roughly, we show that due to the local nature of the governing interactions, these distributions are identical to what one encounters in the commuting cases, up to exponentially small corrections. Finally, we use these bounds to study the spectrum of a locally truncated Hamiltonian, in which the energies of a contiguous region have been truncated above some threshold energy. We show that the lower part of the spectrum of this Hamiltonian is exponentially close to that of the original Hamiltonian. A restricted version of this result in 1D was a central building block in a recent improvement of the 1D area-law.

MSC:

81T25 Quantum field theory on lattices
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics

Keywords:

2/170; 2/115

References:

[1] Lieb E H and Robinson D W 1972 The finite group velocity of quantum spin systems Commun. Math. Phys.28 251-7 · doi:10.1007/BF01645779
[2] Hastings M B 2004 Lieb-Schultz-Mattis in higher dimensions Phys. Rev. B 69 104431 · doi:10.1103/PhysRevB.69.104431
[3] Nachtergaele B and Sims R 2006 Lieb-Robinson bounds and the exponential clustering theorem Commun. Math. Phys.265 119-30 · Zbl 1104.82013 · doi:10.1007/s00220-006-1556-1
[4] Cheneau M, Barmettler P, Poletti D, Endres M, Schauß P, Fukuhara T, Gross C, Bloch I, Kollath C and Kuhr S 2012 Light-cone-like spreading of correlations in a quantum many-body system Nature481 484-7 · doi:10.1038/nature10748
[5] Richerme P, Gong Z-X, Lee A, Senko C, Smith J, Foss-Feig M, Michalakis S, Gorshkov A V and Monroe C 2014 Non-local propagation of correlations in quantum systems with long-range interactions Nature511 198-201 · doi:10.1038/nature13450
[6] Nachtergaele B and Sims R 2007 A multi-dimensional Lieb-Schultz-Mattis theorem Commun. Math. Phys.276 437-72 · Zbl 1136.82009 · doi:10.1007/s00220-007-0342-z
[7] Hastings M B 2004 Locality in quantum and markov dynamics on lattices and networks Phys. Rev. Lett.93 140402 · doi:10.1103/PhysRevLett.93.140402
[8] Hastings M B and Koma T 2006 Spectral gap and exponential decay of correlations Commun. Math. Phys.265 781-804 · Zbl 1104.82010 · doi:10.1007/s00220-006-0030-4
[9] Hastings M B 2007 An area law for one-dimensional quantum systems J. Stat. Mech. P08024 · Zbl 1456.82046 · doi:10.1088/1742-5468/2007/08/p08024
[10] Osborne T J 2006 Efficient approximation of the dynamics of one-dimensional quantum spin systems Phys. Rev. lett.97 157202 · doi:10.1103/PhysRevLett.97.157202
[11] Osborne T J 2007 Simulating adiabatic evolution of gapped spin systems Phys. Rev. A 75 032321 · doi:10.1103/PhysRevA.75.032321
[12] Hastings M B 2009 Quantum adiabatic computation with a constant gap is not useful in one dimension Phys. Rev. Lett.103 050502 · doi:10.1103/PhysRevLett.103.050502
[13] Hastings M B and Wen X-G 2005 Quasiadiabatic continuation of quantum states: the stability of topological ground-state degeneracy and emergent gauge invariance Phys. Rev. B 72 045141 · doi:10.1103/PhysRevB.72.045141
[14] Bravyi S, Hastings M and Verstraete F 2006 Lieb-Robinson bounds and the generation of correlations and topological quantum order Phys. Rev. Lett.97 050401 · doi:10.1103/PhysRevLett.97.050401
[15] Bravyi S, Hastings M B and Michalakis S 2010 Topological quantum order: stability under local perturbations J. Math. Phys.51 093512 · Zbl 1309.81067 · doi:10.1063/1.3490195
[16] Bravyi S and Hastings M B 2011 A short proof of stability of topological order under local perturbations Commun. Math. Phys.307 609-27 · Zbl 1229.81089 · doi:10.1007/s00220-011-1346-2
[17] Hastings M B and Michalakis S 2014 Quantization of Hall conductance for interacting electrons on a torus Commun. Math. Phys.334 433-71 · Zbl 1308.81190 · doi:10.1007/s00220-014-2167-x
[18] Lieb E, Schultz T and Mattis D 1961 Two soluble models of an antiferromagnetic chain Ann. Phys.16 407-66 · Zbl 0129.46401 · doi:10.1016/0003-4916(61)90115-4
[19] Haldane F 1983 Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Néel state Phys. Rev. Lett.50 1153 · doi:10.1103/PhysRevLett.50.1153
[20] Haldane F D M 1983 Continuum dynamics of the 1-d Heisenberg antiferromagnet: identification with the o(3) nonlinear sigma model Phys. Lett. A 93 464-8 · doi:10.1016/0375-9601(83)90631-X
[21] Affleck I, Kennedy T, Lieb E H and Tasaki H 1987 Rigorous results on valence-bond ground states in antiferromagnets Phys. Rev. Lett.59 799-802 · doi:10.1103/PhysRevLett.59.799
[22] Lipkin H J, Meshkov N and Glick A 1965 Validity of many-body approximation methods for a solvable model: (i). Exact solutions and perturbation theory Nucl. Phys.62 188-98 · doi:10.1016/0029-5582(65)90862-X
[23] Eisert J, Cramer M and Plenio M B 2010 Colloquium: area laws for the entanglement entropy Rev. Mod. Phys.82 277-306 · Zbl 1205.81035 · doi:10.1103/RevModPhys.82.277
[24] Polkovnikov A, Sengupta K, Silva A and Vengalattore M 2011 Colloquium: nonequilibrium dynamics of closed interacting quantum systems Rev. Mod. Phys.83 863-83 · doi:10.1103/RevModPhys.83.863
[25] White S R and Affleck I 2008 Spectral function for the s = 1 Heisenberg antiferromagetic chain Phys. Rev. B 77 134437 · doi:10.1103/PhysRevB.77.134437
[26] Barthel T, Schollwöck U and White S R 2009 Spectral functions in one-dimensional quantum systems at finite temperature using the density matrix renormalization group Phys. Rev. B 79 245101 · doi:10.1103/PhysRevB.79.245101
[27] Eisert J, Friesdorf M and Gogolin C 2015 Quantum many-body systems out of equilibrium Nat. Phys.11 124-30 · doi:10.1038/nphys3215
[28] Deutsch J M 1991 Quantum statistical mechanics in a closed system Phys. Rev. A 43 2046-9 · doi:10.1103/PhysRevA.43.2046
[29] Srednicki M 1994 Chaos and quantum thermalization Phys. Rev. E 50 888-901 · doi:10.1103/PhysRevE.50.888
[30] Tasaki H 1998 From quantum dynamics to the canonical distribution: general picture and a rigorous example Phys. Rev. Lett.80 1373-6 · Zbl 0944.82001 · doi:10.1103/PhysRevLett.80.1373
[31] Rigol M, Dunjko V and Olshanii M 2008 Thermalization and its mechanism for generic isolated quantum systems Nature452 854-8 · doi:10.1038/nature06838
[32] Rigol M and Srednicki M 2012 Alternatives to eigenstate thermalization Phys. Rev. Lett.108 110601 · doi:10.1103/PhysRevLett.108.110601
[33] Benoist T, Jak V, Panati A, Pautrat Y and Pillet C-A 2015 Full statistics of energy conservation in two-time measurement protocols Phys. Rev. E 92 032115 · doi:10.1103/PhysRevE.92.032115
[34] Kuwahara T, Mori T and Saito K 2016 Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems Ann. Phys., NY367 96-124 · Zbl 1378.81175 · doi:10.1016/j.aop.2016.01.012
[35] Mller M, Adlam E, Masanes L and Wiebe N 2015 Thermalization and canonical typicality in translation-invariant quantum lattice systems Commun. Math. Phys.340 499-561 · Zbl 1335.82007 · doi:10.1007/s00220-015-2473-y
[36] Ball R C 2005 Fermions without fermion fields Phys. Rev. Lett.95 176407 · doi:10.1103/PhysRevLett.95.176407
[37] Verstraete F and Cirac J I 2005 Mapping local Hamiltonians of fermions to local Hamiltonians of spins J. Stat. Mech. P09012 · Zbl 1456.82200 · doi:10.1088/1742-5468/2005/09/P09012
[38] Arad I, Kitaev A, Landau Z and Vazirani U 2013 An area law and sub-exponential algorithm for 1d systems arXiv:1301.1162
[39] Miller W 1972 Symmetry Groups and Their Applications vol 50 (New York: Academic) · Zbl 0306.22001
[40] Franklin J N 2012 Matrix Theory (New York: Dover)
[41] Kuwahara T, Arad I, Amico L and Vedral V 2015 Local reversibility and entanglement structure of many-body ground states arXiv:1502.05330
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.