×

Mixed-state form factors of \(U(1)\) twist fields in the Dirac theory. (English) Zbl 1456.81054

Summary: Using the “Liouville space” (the space of operators) of the massive Dirac theory, we define mixed-state form factors of \(U(1)\) twist fields. We consider mixed states with density matrices diagonal in the asymptotic particle basis. This includes the thermal Gibbs state as well as all generalized Gibbs ensembles of the Dirac theory. When the mixed state is specialized to a thermal Gibbs state, using a Riemann-Hilbert problem and low-temperature expansion, we obtain finite-temperature form factors of \(U(1)\) twist fields. We then propose the expression for form factors of \(U(1)\) twist fields in general diagonal mixed states. We verify that these form factors satisfy a system of nonlinear functional differential equations, which is derived from the trace definition of mixed-state form factors. At last, under weak analytic conditions on the eigenvalues of the density matrix, we write down the large distance form factor expansions of two-point correlation functions of these twist fields. Using the relation between the Dirac and Ising models, this provides the large-distance expansion of the Rényi entropy (for integer Rényi parameter) in the Ising model in diagonal mixed states.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations

References:

[1] Karowski M and Weisz P 1978 Exact form-factors in (1 + 1)-dimensional field theoretic models with soliton behaviour Nucl. Phys. B 139 455 · doi:10.1016/0550-3213(78)90362-0
[2] Zamolodchikov A B and Zamolodchikov Al B 1979 Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models Ann. Phys.120 253 · doi:10.1016/0003-4916(79)90391-9
[3] Smirnov F 1992 Form Factors in Completely Integrable Models of Quantum Field Theory(Advanced Series in Mathematical Physics vol 14) (Singapore: World Scientific) · Zbl 0788.46077 · doi:10.1142/1115
[4] Delfino G 2004 Integrable field theory and critical phenomena: the Ising model in a magnetic field J. Phys. A: Math. Gen.37 R45 · Zbl 1119.81383 · doi:10.1088/0305-4470/37/14/R01
[5] Mussardo G 2010 Statistical Field Theory: an Introduction to Exactly Solved Models in Statistical Physics (New York: Oxford University Press) · Zbl 1187.82001
[6] Zamolodchikov Al B 1991 Two-point correlation function in scaling Lee-Yang model Nucl. Phys. B 348 619 · doi:10.1016/0550-3213(91)90207-E
[7] Yurov V P and Zamolodchikov Al B 1991 Correlation functions of integrable 2D models of relativistic field theory: Ising model Int. J. Mod. Phys.6 3419 · doi:10.1142/S0217751X91001660
[8] Matsubara T 1995 A new approach to quantum-statistical mechanics Prog. Theor. Phys.14 351 · Zbl 0067.18802 · doi:10.1143/PTP.14.351
[9] Essler F H L and Konik R M 2004 Applications of massive integrable quantum field theories to problems in condensed matter physics From Fields to Strings: Circumnavigating Theoretical Physics(Ian Kogan Memorial Collection vol 1) ed M Shifman et al (Singapore: World Scientific) p 684
[10] Leclair A, Lesage F, Sachdev S and Saleur H 1996 Finite temperature correlations in the one-dimensional quantum Ising model Nucl. Phys. B 482 579 · Zbl 0925.82043 · doi:10.1016/S0550-3213(96)00456-7
[11] Fonseca P and Zamolodchikov A B 2003 Ising field theory in a magnetic field: analytic properties of the free energy J. Stat. Phys.110 527 · Zbl 1016.82014 · doi:10.1023/A:1022147532606
[12] Doyon B 2005 Finite-temperature form factors in the free Majorana theory J. Stat. Mech. P11006 · Zbl 1456.82120 · doi:10.1088/1742-5468/2005/11/P11006
[13] Leclair A and Mussardo G 1999 Finite temperature correlation functions in integrable QFT Nucl. Phys. B 552 624 · Zbl 0951.81065 · doi:10.1016/S0550-3213(99)00280-1
[14] Reyes S A and Tsvelik A M 2006 Finite-temperature correlation function for the one-dimensional quantum Ising model: the virial expansion Phys. Rev. B 73 220405 · doi:10.1103/PhysRevB.73.220405
[15] Doyon B 2007 Finite-temperature form factors: a review SIGMA3 011 (Proc. of the O’Raifeartaigh Symp. on Non-Perturbative and Symmetry Methods in Field Theory (Budapest, June 2006)) · Zbl 1133.81027
[16] Fonseca P and Zamolodchikov A B 2003 Ward identities and integrable differential equations in the Ising field theory (hep-th/0309228)
[17] Doyon B and Gamsa A 2008 Integral equations and long-time asymptotics for finite-temperature Ising chain correlation functions J. Stat. Mech. P03012 · Zbl 1459.82038 · doi:10.1088/1742-5468/2008/03/P03012
[18] Sachdev S and Young A P 1997 Low temperature relaxational dynamics of the Ising chain in a transverse field Subir Sachdev Phys. Rev. Lett.78 2220 · doi:10.1103/PhysRevLett.78.2220
[19] Pozsgay B and Takács G 2008 Form factors in finite volume I: form factor bootstrap and truncated conformal space Nucl. Phys. B 788 167 · Zbl 1220.81161 · doi:10.1016/j.nuclphysb.2007.06.027
[20] Pozsgay B and Takács G 2008 Form factors in finite volume II: disconnected terms, finite temperature correlators Nucl. Phys. B 788 209 · Zbl 1220.81162 · doi:10.1016/j.nuclphysb.2007.07.008
[21] Essler F H L and Konik R M 2008 Finite-temperature lineshapes in gapped quantum spin chains Phys. Rev. B 78 100403 · doi:10.1103/PhysRevB.78.100403
[22] Essler F H L and Konik R M 2009 Finite-temperature dynamical correlations in massive integrable quantum field theories J. Stat. Mech. P09018 · Zbl 1456.81231 · doi:10.1088/1742-5468/2009/09/P09018
[23] Pozsgay B and Takács G 2010 Form factor expansion for thermal correlators J. Stat. Mech. P11012 · doi:10.1088/1742-5468/2010/11/P11012
[24] Szécsényi I M and Takács G 2012 Spectral expansion for finite temperature two-point functions and clustering (arXiv:1210.0331v1)
[25] Rigol M, Dunjko V, Yurovsky V and Olshanii M 2007 Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of lattice hard-core bosons Phys. Rev. Lett.98 50405 · doi:10.1103/PhysRevLett.98.050405
[26] Rigol M, Dunjko V and Olshanii M 2008 Thermalization and its mechanism for generic isolated quantum systems Nature452 854 · doi:10.1038/nature06838
[27] Polkovnikov A, Sengupta K, Silva A and Vengalattore M 2001 Nonequilibrium dynamics of closed interacting quantum systems Rev. Mod. Phys.83 863 · doi:10.1103/RevModPhys.83.863
[28] Calabrese P, Essler F H L and Fagotti M 2011 Quantum quench in the transverse field Ising chain Phys. Rev. Lett.106 227203 · doi:10.1103/PhysRevLett.106.227203
[29] Calabrese P, Essler F H L and Fagotti M 2012 Quantum quench in the transverse field Ising chain I: time evolution of order parameter correlators J. Stat. Mech. P07016 · doi:10.1088/1742-5468/2012/07/P07016
[30] Aschbacher W H and Pillet C-A 2003 Non-equilibrium steady states of the XY chain 2003 J. Stat. Phys.112 1153 · Zbl 1032.82020 · doi:10.1023/A:1024619726273
[31] Bernard D and Doyon B 2012 Energy flow in non-equilibrium conformal field theory J. Phys. A: Math. Theor.45 362001 · Zbl 1255.81212 · doi:10.1088/1751-8113/45/36/362001
[32] Bernard D and Doyon B 2015 Non-equilibrium steady states in conformal field theory Ann. Henri Poincaré16 113 · Zbl 1312.82012 · doi:10.1007/s00023-014-0314-8
[33] Doyon B 2012 Nonequilibrium density matrix for thermal transport in quantum field theory, Les Houches lectures (arXiv:1212.1077v1)
[34] De Luca A, Viti J, Bernard D and Doyon B 2013 Non-equilibrium thermal transport in the quantum Ising chain Phys. Rev. B 88 134301 · doi:10.1103/PhysRevB.88.134301
[35] Schroer B and Truong T T 1978 The order/disorder quantum field operators associated with the two-dimensional Ising model in the continuum limit Nucl. Phys. B 144 80 · doi:10.1016/0550-3213(78)90499-6
[36] Efthimiou C and LeClair A 1995 Particle-field duality and form-factors from vertex operators Commun. Math. Phys.171 531 · Zbl 0839.58071 · doi:10.1007/BF02104677
[37] Marino E C, Schroer B and Swieca J A 1982 Euclidean functional integral approach for disorder variables and kinks Nucl. Phys. B 200 473 · doi:10.1016/0550-3213(82)90523-5
[38] Bernard D and LeClair A 1994 Differential equations for sine-Gordon correlation functions at the free fermion point Nucl. Phys. B 426 534 · Zbl 1049.81620 · doi:10.1016/0550-3213(94)90020-5
[39] Bernard D and LeClair A 1994 Differential equations for sine-Gordon correlation functions at the free fermion point Nucl. Phys. B 498 619 (erratum) · Zbl 0900.35338 · doi:10.1016/S0550-3213(97)00355-6
[40] Sato M, Miwa T and Jimbo M 1979 Holonomic quantum fields. 4 Publ. Res. Inst. Math. Sci. Kyoto15 871 · Zbl 0436.35077 · doi:10.2977/prims/1195187881
[41] Doyon B and Silk J 2011 Correlation functions of twist fields from Ward identities in the massive Dirac theory J. Phys. A: Math. Theor.44 295402 · Zbl 1264.81284 · doi:10.1088/1751-8113/44/29/295402
[42] Silk J 2012 More general correlation functions of twist fields from Ward identities in the massive Dirac theory J. Phys. A: Math. Theor.45 195401 · Zbl 1247.81602 · doi:10.1088/1751-8113/45/19/195401
[43] Chen Y and Doyon B 2014 Form factors in equilibrium and non-equilibrium mixed states of the Ising model J. Stat. Mech. P09021 · Zbl 1456.82102 · doi:10.1088/1742-5468/2014/09/P09021
[44] Gelfand I M and Naimark M A 1943 On the imbedding of normed rings into the ring of operators on a Hilbert space Math. Sb.12 197 · Zbl 0060.27006
[45] Segal I E 1947 Irreducible representations of operator algebras Bull. Am. Math. Soc.53 73 · Zbl 0031.36001 · doi:10.1090/S0002-9904-1947-08742-5
[46] Arveson W 1981 An Invitation to C*-Algebra (New York: Springer)
[47] Lukyanov S and Zamolodchikov A 1996 Exact expectation values of local fields in quantum sine-Gordon model Nucl. Phys. B 493 571 · Zbl 0909.58064 · doi:10.1016/S0550-3213(97)00123-5
[48] Doyon B 2003 Two-point functions of scaling fields in the Dirac theory on the Poincaré disk Nucl. Phys. B 675 607 · Zbl 1097.81671 · doi:10.1016/j.nuclphysb.2003.09.021
[49] Itzykson C and Drouffe J M 1989 Statistical Field Theory (Cambridge: Cambridge University Press) · Zbl 0825.81002 · doi:10.1017/CBO9780511622779
[50] Lieb E, Schultz T and Mattis D 1961 Two soluble models of an antiferromagnetic chain Ann. Phys., NY16 407 · Zbl 0129.46401 · doi:10.1016/0003-4916(61)90115-4
[51] Katsura S 1962 Statistical mechanics of the anisotropic linear Heisenberg model Phys. Rev.127 1508 · Zbl 0128.23701 · doi:10.1103/PhysRev.127.1508
[52] Jordan P and Wigner W 1928 Über das Paulische Äquivalenzverbot Z. Phys.47 631 · JFM 54.0983.03 · doi:10.1007/BF01331938
[53] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Concentrating partial entanglement by local operations Phys. Rev. A 53 2046 · doi:10.1103/PhysRevA.53.2046
[54] Holzhey C, Larsen F and Wilczek F 1994 Geometric, renormalized entropy in conformal field theory Nucl. Phys. B 424 443 · Zbl 0990.81564 · doi:10.1016/0550-3213(94)90402-2
[55] Calabrese P and Cardy J L 2004 Entanglement entropy and quantum field theory J. Stat. Mech. P06002 · Zbl 1082.82002 · doi:10.1088/1742-5468/2004/06/P06002
[56] Knizhnik V G 1987 Analytic fields on Riemann surfaces. II Commun. Math. Phys.112 567 · Zbl 0656.58044 · doi:10.1007/BF01225373
[57] Cardy J L, Castro-Alvaredo O A and Doyon B 2008 Form factors of branch-point twist fields in quantum integrable models and entanglement entropy J. Stat. Phys.130 129 · Zbl 1134.81043 · doi:10.1007/s10955-007-9422-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.