×

Record statistics for a discrete-time random walk with correlated steps. (English) Zbl 1456.60106

Summary: The characterization of record events is considered for a discrete-time random walk model with long-term memory arising from correlations between successive steps. An important feature is that the correlations are strong enough to give rise to super-diffusivity and transience. Various quantities related to record statistics are calculated exactly, highlighting important differences in behaviour from the simple random walk with independent steps.

MSC:

60G50 Sums of independent random variables; random walks
62G32 Statistics of extreme values; tail inference

Software:

SumTools

References:

[1] Wergen G 2013 J. Phys. A: Math. Theor.46 223001 · Zbl 1274.60169 · doi:10.1088/1751-8113/46/22/223001
[2] Majumdar S N and Ziff R M 2008 Phys. Rev. Lett.101 050601 · Zbl 1228.82037 · doi:10.1103/PhysRevLett.101.050601
[3] Le Doussal P and Wiese K J 2009 Phys. Rev. E 79 051105 · doi:10.1103/PhysRevE.79.051105
[4] Wergen G, Bogner M and Krug J 2011 Phys. Rev. E 83 051109 · doi:10.1103/PhysRevE.83.051109
[5] Majumdar S N, Schehr G and Wergen G 2012 J. Phys. A: Math. Theor.45 355002 · Zbl 1250.82036 · doi:10.1088/1751-8113/45/35/355002
[6] Godrèche C, Majumdar S N and Schehr G 2014 J. Phys. A: Math. Theor.47 255001 · Zbl 1302.60016 · doi:10.1088/1751-8113/47/25/255001
[7] Gouet R, Lopez F J and Sanz G 2015 Adv. Appl. Prob.47 1175 · Zbl 1333.60051 · doi:10.1239/aap/1449859805
[8] Godrèche C, Majumdar S N and Schehr G 2017 J. Phys. A: Math. Theor.50 333001 · Zbl 1376.82074 · doi:10.1088/1751-8121/aa71c1
[9] Schütz G M and Trimper S 2004 Phys. Rev. E 70 045101 · doi:10.1103/PhysRevE.70.045101
[10] Hod S and Keshet U 2004 Phys. Rev. E 70 015104 · doi:10.1103/PhysRevE.70.015104
[11] Menshikov M and Volkov S 2008 Electron. J. Probab.13 944 · Zbl 1191.60086 · doi:10.1214/EJP.v13-508
[12] Huillet T 2008 J. Phys. A: Math. Theor.41 505005 · Zbl 1155.82009 · doi:10.1088/1751-8113/41/50/505005
[13] Kim H-J 2014 Phys. Rev. E 90 012103 · doi:10.1103/PhysRevE.90.012103
[14] Budini A 2017 Phys. Rev. E 95 052110 · doi:10.1103/PhysRevE.95.052110
[15] Kearney M J and Martin R J 2018 J. Stat. Mech.: Theor. Expt.2018 013209 · Zbl 1459.82106 · doi:10.1088/1742-5468/aaa38a
[16] Metzler R and Klafter J 2000 Phys. Rep.339 1 · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[17] Metzler R and Klafter J 2004 J. Phys. A: Math. Gen.37 R161 · Zbl 1039.40001 · doi:10.1088/0305-4470/37/1/011
[18] Johnson N L and Kotz S 1977 Urn Models and Their Application: an Approach to Modern Discrete Probability Theory (New York: Wiley) · Zbl 0352.60001
[19] Antal T, Ben-Naim E and Krapivsky P L 2010 J. Stat. Mech. P07009 · Zbl 1456.60029 · doi:10.1088/1742-5468/2010/07/P07009
[20] Sparre Andersen E 1953 Math. Scand.1 263 · Zbl 0053.09701 · doi:10.7146/math.scand.a-10385
[21] Sparre Andersen E 1954 Math. Scand.2 195 · Zbl 0058.12102 · doi:10.7146/math.scand.a-10407
[22] Koepf W 2014 Hypergeometric Summation: an Algorithmic Approach to Summation and Special Function Identities (London: Springer) · Zbl 1296.33002 · doi:10.1007/978-1-4471-6464-7
[23] Mounaix P, Majumdar S N and Schehr G 2018 J. Stat. Mech. 083201 · Zbl 1457.82155 · doi:10.1088/1742-5468/aad364
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.