×

Orthogonally additive polynomials on non-commutative \(L^p\)-spaces. (English) Zbl 1456.46051

The authors show that, if \(\mathcal{A}\) is a \(C^*\)-algebra (resp., a \(C^*\)-algebra of real rank zero with an increasing approximate unit of projections), \(X\) is a locally convex space (resp., topological vector space), and \(P:\mathcal{A}\to X\) is a continuous \(m\)-homogeneous polynomial, then the following are equivalent: (i) there is a continuous linear mapping \(\Phi:\mathcal{A}\to X\) such that \(P(x)=\Phi(x^m)\) for all \(x\) in \(\mathcal{A}\); (ii) \(P\) is orthogonally additive on \(\mathcal{A}_{sa}\), the self-adjoint part of \(\mathcal{A}\); (iii) \(P\) is orthogonally additive on \(\mathcal{A}_+\), the positive part of \(\mathcal A\).
Using these results, they show that, if \(H\) is a Hilbert space of dimension greater than or equal to \(2\), then there are no non-zero orthogonally additive \(m\)-homogeneous polynomials from \(\mathcal{B}(H)\) into any topological vector space \(X\).
When \(\mathcal{M}\) is a von Neumann algebra with a normal semifinite faithful trace \(\tau\) and \(P\) is a continuous \(m\)-homogeneous polynomial from \(L^p(\mathcal{M},\tau)\) into a topological vector space \(X\), \(0< p<\infty\), the authors show that the following are equivalent: (i) there is a continuous linear mapping \(\Phi: L^{p/m}(\mathcal{M},\tau)\to X\) such that \(P(x)=\Phi(x^m)\) for all \(x\) in \(L^p(\mathcal{M},\tau)\); (ii) \(P\) is orthogonally additive on \(L^p(\mathcal{M},\tau)_{sa}\), the self-adjoint part of \(L^p(\mathcal{M},\tau)\); (iii) \(P\) is orthogonally additive on \(S(\mathcal{M},\tau)_+\).
This allows the authors to present a number of results concerning orthogonally additive polynomials on the Schatten \(p\)-class, \(S^p(H)\), and the space of compact operators on a Hilbert space \(H\), \(\mathcal{K}(H)\). From this it follows that, if \(H\) is a Hilbert space of dimension at least \(2\), then for \(0< p<\infty\), there are no non-zero orthogonally additive polynomials on \(S^p(H)\).

MSC:

46L52 Noncommutative function spaces
46G25 (Spaces of) multilinear mappings, polynomials
46L10 General theory of von Neumann algebras

References:

[1] Alaminos, J.; Extremera, J.; Villena, AR, Orthogonally additive polynomials on Fourier algebras, J. Math. Anal. Appl., 422, 72-83 (2015) · Zbl 1319.46034 · doi:10.1016/j.jmaa.2014.08.035
[2] Alaminos, J.; Extremera, J.; Godoy, MLC; Villena, AR, Orthogonally additive polynomials on convolution algebras associated with a compact group, J. Math. Anal. Appl., 472, 285-302 (2019) · Zbl 1416.43003 · doi:10.1016/j.jmaa.2018.11.024
[3] Alaminos, J.; Godoy, MLC; Villena, AR, Orthogonally additive polynomials on the algebras of approximable operators, Linear Multilinear Algebra, 67, 1922-1936 (2019) · Zbl 07089824 · doi:10.1080/03081087.2018.1476445
[4] Benyamini, Y.; Lassalle, S.; Llavona, JG, Homogeneous orthogonally additive polynomials on Banach lattices, Bull. Lond. Math. Soc., 38, 459-469 (2006) · Zbl 1110.46033 · doi:10.1112/S0024609306018364
[5] Blackadar, B.: Operator algebras. Theory of \(C^*\)-algebras and von Neumann algebras. In: Cuntz, J., Jones, V.F.R. (eds.) Encyclopaedia of Mathematical Sciences. Operator Algebras and Non-commutative Geometry. III, vol. 122. Springer, Berlin (2006) · Zbl 1092.46003
[6] Carando, D.; Lassalle, S.; Zalduendo, I., Orthogonally additive polynomials over \(C(K)\) are measures: a short proof, Integral Equ. Oper. Theory, 56, 597-602 (2006) · Zbl 1122.46025 · doi:10.1007/s00020-006-1439-z
[7] Davidson, KR, \(C^*\)-Algebras by Example. Fields Institute Monographs (1996), Providence: American Mathematical Society, Providence · Zbl 0958.46029
[8] Dineen, S., Complex Analysis on Infinite-Dimensional Spaces. Springer Monographs in Mathematics (1999), London: Springer, London · Zbl 1034.46504
[9] Ibort, A.; Linares, P.; Llavona, JG, A representation theorem for orthogonally additive polynomials on Riesz spaces, Rev. Mat. Complut., 25, 21-30 (2012) · Zbl 1297.46006 · doi:10.1007/s13163-010-0053-4
[10] Nelson, E., Notes on non-commutative integration, J. Funct. Anal., 15, 103-116 (1974) · Zbl 0292.46030 · doi:10.1016/0022-1236(74)90014-7
[11] Palazuelos, C.; Peralta, AM; Villanueva, I., Orthogonally additive polynomials on \(C^*\)-algebras, Q. J. Math., 59, 363-374 (2008) · Zbl 1159.46035 · doi:10.1093/qmath/ham042
[12] Pérez-García, D.; Villanueva, I., Orthogonally additive polynomials on spaces of continuous functions, J. Math. Anal. Appl., 306, 97-105 (2005) · Zbl 1076.46035 · doi:10.1016/j.jmaa.2004.12.036
[13] Pisier, G.; Xu, Q., Non-commutative \(L^p\)-Spaces. Handbook of the Geometry of Banach Spaces, 1459-1517 (2003), Amsterdam: North-Holland, Amsterdam · Zbl 1046.46048
[14] Raynaud, Y.; Xu, Q., On subspaces of non-commutative \(L_p\)-spaces, J. Funct. Anal., 203, 149-196 (2003) · Zbl 1056.46056 · doi:10.1016/S0022-1236(03)00045-4
[15] Saito, KS, Noncommutative \(L^p\)-spaces with \(0<p<1\), Math. Proc. Camb. Philos. Soc., 89, 405-411 (1981) · Zbl 0462.46045 · doi:10.1017/S030500410005831X
[16] Sundaresan, K.; Gritzmann, P.; Sturmfels, B., Geometry of spaces of homogeneous polynomials on Banach lattices, Applied Geometry and Discrete Mathematics, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 571-586 (1991), Providence: American Mathematical Society, Providence · Zbl 0745.46028
[17] Takesaki, M., Theory of Operator Algebras. I (1979), New York: Springer, New York · Zbl 0436.46043
[18] Terp, M.: \(L^p\) spaces associated with von Neumann algebras. Notes, Mathematical Institute, Copenhagen University (1981)
[19] Villena, AR, Orthogonally additive polynomials on Banach function algebras, J. Math. Anal. Appl., 448, 447-472 (2017) · Zbl 1370.46026 · doi:10.1016/j.jmaa.2016.11.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.