×

Exact solutions and conservation laws of multi Kaup-Boussinesq system with fractional order. (English) Zbl 1456.35221

Summary: The purpose of the present work is to investigate exact solutions of the fractional order multi Kaup-Boussinesq system with \(l=2\) by using the group invariance approach and power series expansion method. Due to the significance of conserved vectors in terms of integrability and behaviour of nonlinear systems, the conservation laws are also derived by testing the nonlinear self-adjointness.

MSC:

35R11 Fractional partial differential equations
35B06 Symmetries, invariants, etc. in context of PDEs
26A33 Fractional derivatives and integrals
34A08 Fractional ordinary differential equations
76M60 Symmetry analysis, Lie group and Lie algebra methods applied to problems in fluid mechanics
70S10 Symmetries and conservation laws in mechanics of particles and systems
Full Text: DOI

References:

[1] Samko, SG; Kilbas, AA; Marichev, OI, Fractional Integrals and Derivatives: Theory and Applications (1993), Longhorne, USA: Gordon and Breach Science Publishers, Longhorne, USA · Zbl 0818.26003
[2] Podlubny, I., Fractional Differential Equations (1999), San Deigo, USA: Academic Press, San Deigo, USA · Zbl 0924.34008
[3] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and Applications of Fractional Differential Equations (2006), Amsterdam, Netherlands: Elsevier, Amsterdam, Netherlands · Zbl 1092.45003
[4] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, JJ, Fractional Calculus: Models and Numerical Methods (2016), London, UK: World Scientific, London, UK · Zbl 1347.26006 · doi:10.1142/10044
[5] Heydari, MH; Avazzadeh, Z.; Yang, Y., Numerical treatment of the space-time fractional model of nonlinear advection-diffusion-reaction equation through te Bernstein polynomials, Fractals, 28, 2040001 (2020) · Zbl 07468583 · doi:10.1142/S0218348X20400010
[6] Yang, XJ; Machado, JAT; Baleanu, D., Exact traveling wave solution for local fractional Boussinesq equation in fractal domain, Fractals, 25, 1740006 (2017) · doi:10.1142/S0218348X17400060
[7] He, J.; Elagan, S.; Li, Z., Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus, Phys. Lett. A, 376, 257-259 (2012) · Zbl 1255.26002 · doi:10.1016/j.physleta.2011.11.030
[8] Saad, M.; Elagan, SK; Hamed, YS; Sayed, M., Using a complex transformation to get an exact solution for fractional generalized coupled MKDV and KDV equations, Int. J. Basic Appl. Sci., 13, 23-25 (2013)
[9] Guner, O.; Aksoy, E.; Bekir, A.; Cevikel, AC, Different methods for (3+1)-dimensional space-time fractional modified KdV-Zakharov-Kuznetsov equation, Comput. Math. Appl., 71, 1259-1269 (2016) · Zbl 1443.35124 · doi:10.1016/j.camwa.2016.02.004
[10] He, JH, Exp-function method for fractional differential equations, Int. J. Nonlinear Sci. Numer. Simul., 1648, 370005 (2015) · doi:10.1063/1.4912594
[11] Zhang, S.; Zhang, HQ, Fractional sub-equation method and its applications to nonlinear fractional PDEs, Phys. Lett. A, 375, 1069-1073 (2011) · Zbl 1242.35217 · doi:10.1016/j.physleta.2011.01.029
[12] Abdel-Salam, EA; Hassan, GF, Solutions to class of linear and nonlinear fractional differential equations, Commun. Theor. Phys., 65, 127 (2016) · Zbl 1335.35268 · doi:10.1088/0253-6102/65/2/127
[13] Huang, Q.; Wang, LZ; Zuo, SL, Consistent Riccati expansion method and its applications to nonlinear partial differential equations, Commun. Theor. Phys., 65, 177 (2016) · Zbl 1335.35279 · doi:10.1088/0253-6102/65/2/177
[14] Singla, K.; Rana, M., Symmetries explicit solutions and conservation laws for some time space fractional nonlinear systems, Rep. Math. Phys., 86, 139-156 (2020) · Zbl 1496.35438 · doi:10.1016/S0034-4877(20)30068-9
[15] Olver, PJ, Applications of Lie Groups to Differential Equations (1993), New York, USA: Springer-Verlag, New York, USA · Zbl 0785.58003 · doi:10.1007/978-1-4612-4350-2
[16] Sahoo, S.; Ray, SS, Invariant analysis with conservation laws for the time fractional Drinfeld-Sokolov-Satsuma-Hirota equations, Chaos Solitons Fractals, 104, 725-733 (2017) · Zbl 1380.35162 · doi:10.1016/j.chaos.2017.09.031
[17] Singla, K.; Gupta, RK, Conservation laws for certain time fractional nonlinear systems of partial differential equations, Commun. Nonlinear Sci. Numer. Simul., 53, 10-21 (2017) · Zbl 1538.35447 · doi:10.1016/j.cnsns.2017.04.032
[18] Huang, Q.; Zhdanov, R., Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann-Liouville derivative, Phys. A, 409, 110-118 (2014) · Zbl 1395.35194 · doi:10.1016/j.physa.2014.04.043
[19] Wang, XB; Tian, SF; Qin, CY; Zhang, TT, Lie symmetry analysis, conservation laws and analytical solutions of a time-fractional generalized KdV-type equation, J. Nonlinear Math. Phys., 24, 516-530 (2017) · Zbl 1420.35298 · doi:10.1080/14029251.2017.1375688
[20] Qin, CY; Tian, SF; Wang, XB; Zhang, TT, Lie symmetries, conservation laws and explicit solutions for the time fractional Rosenau-Haynam equation, Waves Random Complex Media, 27, 308-324 (2017) · Zbl 1366.35224 · doi:10.1080/17455030.2016.1231434
[21] Inc, M.; Yusuf, A.; Aliyu, AI; Baleanu, D., Lie symmetry analysis and explicit solutions for the time fractional generalized Burgers-Huxley equation, Opt. Quantum Electron., 50, 94, 16 (2018) · Zbl 1386.37076
[22] Inc, M.; Yusuf, A.; Aliyu, AI; Baleanu, D., Time-fractional Cahn-Allen and time-fractional Klein-Gordon equations: Lie symmetry analysis, explicit solutions and convergence analysis, Phys. A, 493, 94-106 (2018) · Zbl 1503.35264 · doi:10.1016/j.physa.2017.10.010
[23] Tchier, F.; Inc, M.; Yusuf, A.; Aliyu, AI; Baleanu, D., Time fractional third-order variant Boussinesq system: symmetry analysis, explicit solutions, conservation laws and numerical approximations, Eur. Phys. J. Plus, 133, 240 (2018) · doi:10.1140/epjp/i2018-12068-0
[24] Shi, D.; Zhang, Y.; Liu, W.; Liu, J., Some exact solutions and conservation laws of the coupled time-fractional Boussinesq-Burgers system, Symmetry, 11, 77 (2019) · Zbl 1423.35414 · doi:10.3390/sym11010077
[25] Singla, K., Gupta, R.K.: Exact series solutions and conservation laws of time fractional three coupled KdV System. In: Proceedings of International Conference on Trends in Computational and Cognitive Engineering, pp. 15-25, Springer, Singapore (2020)
[26] Lukashchuk, SYu, Conservation laws for time-fractional subdiffusion and diffusion-wave equations, Nonlinear Dyn., 80, 791-802 (2015) · Zbl 1345.35131 · doi:10.1007/s11071-015-1906-7
[27] Tian, X.; Zhang, Y., Noether symmetry and conserved quantities of fractional Birkhoffian system in terms of Herglotz variational problem, Commun. Theor. Phys., 70, 280 (2018) · Zbl 1452.34014 · doi:10.1088/0253-6102/70/3/280
[28] Gürses M.: Integrable hierarchy of multi-component Kaup-Boussinesq equations. arXiv:1301.4075 (2013)
[29] Gürses, M.; Pekcan, A., Traveling wave solutions of degenerate coupled Korteweg-de Vries equation, J. Math. Phys., 55, 091501 (2014) · Zbl 1303.35090 · doi:10.1063/1.4893636
[30] Singla, K.; Gupta, RK, On invariant analysis of some time fractional nonlinear systems of partial differential equations, I. J. Math. Phys., 57, 101504 (2016) · Zbl 1349.35408 · doi:10.1063/1.4964937
[31] Buckwar, E.; Luchko, Y., Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations, J. Math. Anal. Appl., 227, 81-97 (1998) · Zbl 0932.58038 · doi:10.1006/jmaa.1998.6078
[32] Kiryakova, V., Generalized Fractional Calculus and Applications (1994), Harlow, UK: Longman Group, Harlow, UK · Zbl 0882.26003
[33] Rudin, W., Principles of Mathematical Analysis (2004), Beijing, China: China Machine Press, Beijing, China · Zbl 0052.05301
[34] Ibragimov, NH, Nonlinear self-adjointness and conservation laws, J. Phys. A Math. Theor., 44, 432002 (2011) · Zbl 1270.35031 · doi:10.1088/1751-8113/44/43/432002
[35] Ibragimov, NH, A new conservation theorem, J. Math. Anal. Appl., 333, 311-328 (2007) · Zbl 1160.35008 · doi:10.1016/j.jmaa.2006.10.078
[36] Ibragimov, NH, Nonlinear self-adjointness in constructing conservation laws, Arch ALGA, 7, 8, 1-39 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.