×

Logarithmic norm-based analysis of robust asymptotic stability of nonlinear dynamical systems. (English) Zbl 1456.34065

The article provides sufficient conditions for the robust (local and global) asymptotic stability of a semilinear differential equation in \(\mathbb{R}^n\). The conditions are given in terms of some integral estimates involving both the time-varying linear and nonlinear parts of the unperturbed equation and the time-varying nonlinear perturbation. The contribution of the linear part is expressed in terms of the integral of the logarithmic norm of the time-varying matrix representing the linear dynamics. The construction of the logarithmic norm is recalled, and a discussion is provided on its dependence on the choice of a norm in \(\mathbb{R}^n\) (and its induced norm in the space of matrices). The combination of the different contributions is estimated using the variation of constants formula. Several examples illustrate the effectiveness of the proposed sufficient conditions for robust asymptotic stability.

MSC:

34D20 Stability of solutions to ordinary differential equations
34D10 Perturbations of ordinary differential equations
Full Text: DOI

References:

[1] Afanas’ev, V. N.; Kolmanovskii, V. B.; Nosov, V. R., Mathematical theory of control systems design (1996), Springer · Zbl 0845.93001
[2] Amato, F.; Cosentino, C.; Merola, A., On the region of attraction of nonlinear quadratic systems, Automatica, 43, 12, 2119-2123 (2007) · Zbl 1138.93028
[3] Chesi, G., Estimating the domain of attraction for uncertain polynomial systems, Automatica, 40, 11, 1981-1986 (2004) · Zbl 1067.93055
[4] Chesi, G., Rational Lyapunov functions for estimating and controlling the robust domain of attraction, Automatica, 49, 4, 1051-1057 (2013) · Zbl 1284.93205
[5] Chiang, H.-D.; Hirsch, M. W.; Wu, F. F., Stability regions of nonlinear autonomous dynamical systems, IEEE Trans Autom Control, 33, 1, 16-27 (1988) · Zbl 0639.93043
[6] Chicone, C., Ordinary differential equations with applications (1999), Springer · Zbl 0937.34001
[7] Coddington, E. A.; Levinson, N., Theory of ordinary differential equations (1955), McGraw-Hill: McGraw-Hill New York · Zbl 0064.33002
[8] Desoer, C. A.; Vidyasagar, M., Feedback systems: input-output properties (2009), SIAM: SIAM Philadelphia · Zbl 0327.93009
[9] Fang, X.; Liu, F.; Ding, Z., Robust control of unmanned helicopters with high-order mismatched disturbances via disturbance-compensation-gain construction approach, J Franklin Inst, 355, 15, 7158-7177 (2018) · Zbl 1398.93239
[10] Gonzales, P.; Pinto, M., Stability properties of the solutions of the nonlinear functional differential systems, J Math Anal Appl, 181, 562-573 (1994) · Zbl 0804.34071
[11] Harville, D. A., Matrix algebra from a statistician’s perspective (2008), Springer: Springer New York · Zbl 1142.15001
[12] Hsu, P.-M.; Lin, C.-L., Robust stability on averaging behaviour of linear time-varying uncertain systems, Syst Sci Control Eng, 3, 1, 274-283 (2015)
[13] Hu, G.-D.; Liu, M., The weighted logarithmic matrix norm and bounds of the matrix exponential, Linear Algebra Appl, 390, 145-154 (2004) · Zbl 1060.15024
[14] Jetto, L.; Orsini, V.; Romagnoli, R., Modeling and quadratic stabilization of a class of linear uncertain time-varying systems, Int J Robust Nonlinear Control, 27, 10, 1810-1825 (2017) · Zbl 1367.93514
[15] Khalil, H. K., Nonlinear systems (2002), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 1003.34002
[16] Liu, Z.; Liu, J.; He, W., Robust adaptive fault tolerant control for a linear cascaded ODE-beam system, Automatica, 98, 42-50 (2018) · Zbl 1406.93094
[17] Lu, M. B.; Liu, L., Robust output consensus of networked heterogeneous nonlinear systems by distributed output regulation, Automatica, 94, 186-193 (2018) · Zbl 1401.93015
[18] Ma, R.; Wang, X.; Liu, Y., Robust stability of switched positive linear systems with interval uncertainties via multiple time-varying linear copositive Lyapunov functions, Nonlinear Anal-Hybrid Syst, 30, 285-292 (2018) · Zbl 1408.93094
[19] Najafi, E.; Babuska, R.; Lopes, G. A.D., A fast sampling method for estimating the domain of attraction, Nonlinear Dyn, 86, 2, 823-834 (2016)
[20] Pachpatte, B. G., On some generalizations of Bellman’s lemma, J Math Anal Appl, 51, 141-150 (1975) · Zbl 0305.26010
[21] Ran, M.; Wang, Q.; Dong, C., Stabilization of a class of nonlinear systems with actuator saturation via active disturbance rejection control, Automatica, 63, 302-310 (2016) · Zbl 1329.93121
[22] Söderlind, G., The logarithmic norm. History and modern theory, BIT Numer Math, 46, 631-652 (2006) · Zbl 1102.65088
[23] Söderlind, G.; Mattheij, R. M.M., Stability and asymptotic estimates in nonautonomous linear differential systems, SIAM J Math Anal, 16, 1, 69-92 (1985) · Zbl 0559.34051
[24] Ström, T., On logarithmic norms, SIAM J Numer Anal, 2, 741-753 (1975) · Zbl 0321.15012
[25] Topcu, U.; Packard, A.; Seiler, P.; Balas, G. J., Robust region-of-attraction estimation, IEEE Trans Autom Control, 55, 1, 137-142 (2010) · Zbl 1368.93510
[26] Valmorbida, G.; Anderson, J., Region of attraction estimation using invariant sets and rational Lyapunov functions, Automatica, 75, 37-45 (2017) · Zbl 1351.93109
[27] Vannelli, A.; Vidyasagar, M., Maximal Lyapunov functions and domains of attraction for autonomous nonlinear systems, Automatica, 21, 1, 69-80 (1985) · Zbl 0559.34052
[28] Vrabel, R., Stabilisation and state trajectory tracking problem for nonlinear control systems in the presence of disturbances, Int J Control, 92, 3, 540-548 (2019) · Zbl 1414.93156
[29] Vrabel, R., On local asymptotic stabilization of the nonlinear systems with time-varying perturbations by state-feedback control, Int J Gen Syst, 48, 1, 80-89 (2019)
[30] Zhou, K.; Doyle, J. C.; Glover, K., Robust and optimal control (1996), Prentice-Hall: Prentice-Hall NJ, Upper Saddle River · Zbl 0999.49500
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.