×

Improvement of random coefficient differential models of growth of anaerobic photosynthetic bacteria by combining Bayesian inference and gPC. (English) Zbl 1456.34046

Summary: The time evolution of microorganisms, such as bacteria, is of great interest in biology. In the article by D. Stanescu et al. [ETNA, Electron. Trans. Numer. Anal. 34, 44–58 (2009; Zbl 1173.60333)], a logistic model was proposed to model the growth of anaerobic photosynthetic bacteria. In the laboratory experiment, actual data for two species of bacteria were considered: Rhodobacter capsulatus and Chlorobium vibrioforme. In this paper, we suggest a new nonlinear model by assuming that the population growth rate is not proportional to the size of the bacteria population, but to the number of interactions between the microorganisms, and by taking into account the beginning of the death phase in the kinetic curve. Stanescu et al. evaluated the effect of randomness into the model coefficients by using generalized polynomial chaos (gPC) expansions, by setting arbitrary distributions without taking into account the likelihood of the data. By contrast, we utilize a Bayesian inverse approach for parameter estimation to obtain reliable posterior distributions for the random input coefficients in both the logistic and our new model. Since our new model does not possess an explicit solution, we use gPC expansions to construct the Bayesian model and to accelerate the Markov chain Monte Carlo algorithm for the Bayesian inference.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
34F05 Ordinary differential equations and systems with randomness
62F15 Bayesian inference
62P10 Applications of statistics to biology and medical sciences; meta analysis
65C30 Numerical solutions to stochastic differential and integral equations
60-08 Computational methods for problems pertaining to probability theory
92D25 Population dynamics (general)

Citations:

Zbl 1173.60333

References:

[1] MonodJ. The growth of bacterial cultures. Annu Rev Microbiol. 1949;3(1):371‐394.
[2] NovickA. Growth of bacteria. Annu Rev Microbiol. 1955;9(1):97‐110.
[3] DuttaR. Fundamentals of Biochemical Engineering. India: Springer; 2008.
[4] HethcoteHW. The mathematics of infectious diseases. SIAM Rev. 2000;42(4):599‐653. · Zbl 0993.92033
[5] MurrayJD. Mathematical Biology I: Springer; 2002.
[6] LevinSA, HallamTG, GrossLJ. Applied Mathematical Ecology, Vol. 18: Berlin‐Heidelberg‐New York: Springer Science & Business Media; 2012.
[7] ZwieteringMH, JongenburgerI, RomboutsFM, Van’t RietK. Modeling of the bacterial growth curve. Appl Environ Microb. 1990;56(6):1875‐1881.
[8] McKellarRC. Development of a dynamic continuous‐discrete‐continuous model describing the lag phase of individual bacterial cells. J Appl Microbiol. 2001;90(3):407‐413.
[9] FujikawaH, KaiA, MorozumiS. A new logistic model for bacterial growth. J Food Hyg Soc Jpn. 2003;44(3):155‐160.
[10] JuskaA, GedminienèG, IvanecR. Growth of microbial populations. Mathematical modeling, laboratory exercises, and model‐based data analysis. Biochem Mol Biol Edu. 2006;34(6):417‐422.
[11] StrandJL. Random ordinary differential equations. J Differ Equations. 1970;7:538‐553. · Zbl 0231.34051
[12] SoongTT. Random Differential Equations in Science and Engineering. New York: Academic Press; 1973. · Zbl 0348.60081
[13] ØksendalB. Stochastic Differential Equations. Berlin‐Heidelberg‐New York: Springer; 2003.
[14] FishmanG. Monte Carlo: Concepts, Algorithms, and Applications. New York: Springer Science & Business Media; 2013.
[15] CortésJC, Navarro‐QuilesA, RomeroJV, RosellóMD. Probabilistic solution of random autonomous first‐order linear systems of ordinary differential equations. Rom Rep Phys. 2016;68(4):1397‐1406.
[16] DoriniFA, CecconelloMS, DoriniMB. On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Commun Nonlinear Sci. 2016;33:160‐173. · Zbl 1510.92159
[17] DoriniFA, CunhaMCC. Statistical moments of the random linear transport equation. J Comput Phys. 2008;227:8541‐8550. · Zbl 1211.65005
[18] CasabánMC, CortésJC, RomeroJV, RosellóM. D.. Probabilistic solution of random SI‐type epidemiological models using the random variable transformation technique. Commun Nonlinear Sci. 2015;24(1‐3):86‐97. · Zbl 1440.92061
[19] HusseinA, SelimMM. Solution of the stochastic radiative transfer equation with Rayleigh scattering using RVT technique. Appl Math Comput. 2012;218(13):7193‐7203. · Zbl 1246.65014
[20] CalatayudJ, CortésJC, JornetM. The damped pendulum random differential equation: a comprehensive stochastic analysis via the computation of the probability density function. Physica A. 2018;512:261‐279. · Zbl 1514.60065
[21] CalatayudJ, CortésJC, JornetM. Uncertainty quantification for random parabolic equations with non‐homogeneous boundary conditions on a bounded domain via the approximation of the probability density function. Math Method Appl Sci. 2018. https://doi.org/10.1002/mma.5333 · Zbl 1432.60062 · doi:10.1002/mma.5333
[22] XiuD. Numerical Methods for Stochastic Computations. A Spectral Method Approach, Cambridge Texts in Applied Mathematics. New York: Princeton University Press; 2010. · Zbl 1210.65002
[23] XiuD, KarniadakisGE. The Wiener‐Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput. 2002;24(2):619‐644. · Zbl 1014.65004
[24] Chen‐CharpentierBM, CortésJC, LiceaJA, RomeroJV, RosellóMD, SantonjaFJ, VillanuevaRJ. Constructing adaptive generalized polynomial chaos method to measure the uncertainty in continuous models: a computational approach. Math Comput Simulat. 2015;109:113‐129. · Zbl 1540.60152
[25] CortésJC, RomeroJV, RosellóMD, VillanuevaRJ. Improving adaptive generalized polynomial chaos method to solve nonlinear random differential equations by the random variable transformation technique. Commun Nonlinear Sci. 2017;50:1‐15. · Zbl 1510.65012
[26] StanescuD, Chen‐CharpentierBM, JensenBJ, ColbergPJS. Random coefficient differential models of growth of anaerobic photosynthetic bacteria. Electron T Numer Ana. 2009;34:44‐58. · Zbl 1173.60333
[27] Chen‐CharpentierBM, StanescuD. Epidemic models with random coefficients. Math Comput Model. 2010;52(7‐8):1004‐1010. · Zbl 1205.60127
[28] StanescuD, Chen‐CharpentierBM. Random coefficient differential equation models for bacterial growth. Math Comput Model. 2009;50(5‐6):885‐895. · Zbl 1185.34075
[29] SantonjaF, Chen‐CharpentierBM. Uncertainty quantification in simulations of epidemics using polynomial chaos. Comput Math Method M. 2012:2012. · Zbl 1401.92203
[30] González‐ParraG, Chen‐CharpentierBM, ArenasAJ. Polynomial chaos for random fractional order differential equations. Appl Math Comput. 2014;26:123‐130. · Zbl 1354.34017
[31] CalatayudJ, CortésJC, JornetM, VillanuevaRJ. Computational uncertainty quantification for random time‐discrete epidemiological models using adaptive gPC. Math Method Appl Sci. 2018;41:9618‐9627. · Zbl 1406.92557
[32] CalatayudJ, CortésJC, JornetM. On the convergence of adaptive gPC for non‐linear random difference equations: theoretical analysis and some practical recommendations. J Nonlinear Sci App. 2018;11(9):1077‐1084. · Zbl 1438.65316
[33] LesaffreE, LawsonAB. Bayesian Biostatistics. London: John Wiley & Sons; 2012. · Zbl 1282.62057
[34] Mohammad‐DjafariA. Bayesian inference for inverse problems. AIP Conf Proc. 2002;617:477‐496.
[35] Corberán‐ValletA, SantonjaFJ, Jornet‐SanzM, VillanuevaRJ. Modeling chickenpox dynamics with a discrete time Bayesian stochastic compartmental model. Complexity. 2018:1‐9.
[36] MarzoukYM, NajmHN, RahnLA. Stochastic spectral methods for efficient Bayesian solution of inverse problems. J Comput Phys. 2007;224(2):560‐586. · Zbl 1120.65306
[37] MarzoukY, XiuD. A stochastic collocation approach to Bayesian inference in inverse problems. Commun Comput Phys. 2009;6(4):826‐847. · Zbl 1364.62064
[38] MalthusTR. An Essay on the Principal of Population. Oxford: Oxford World’s Classics Paperbacks Oxford University Press; 1999.
[39] TurchinP. Does population ecology have general lawsOikos. 2001;94(1):17‐26.
[40] VerhulstPF. Notice sur la loi que la population suit dans son accroissement. Corr Math et Phys. 1838;10:113‐121.
[41] RoosAM. Modeling Population Dynamics Netherlands: Notes from the University of Amsterdam; 2014.
[42] LehmannEL, CasellaG. Theory of Point Estimation. New York: Springer Science & Business Media; 2006.
[43] CasellaG. An introduction to empirical Bayes data analysis. Am Stat. 1985;39(2):83‐87.
[44] CarlinBP, LouisTA. Bayes and Empirical Bayes Methods for Data Analysis. London: Chapman and Hall/CRC; 2010.
[45] TarantolaA. Inverse problem theory and methods for model parameter estimation. SIAM. London: 2005. · Zbl 1074.65013
[46] LunnDJ, ThomasA, BestN, SpiegelhalterD. WinBUGS—a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput. 2000;10(4):325‐337.
[47] DepaoliS, CliftonJP, CobbPR. Just another Gibbs sampler (JAGS): flexible software for MCMC implementation. J Educ Behav Stat. 2016;41(6):628‐649.
[48] JohnsonTR, KuhnKM. Bayesian Thurstonian models for ranking data using JAGS. Behav Res Methods. 2013;45(3):857‐872.
[49] PlummerM. Jags: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling, Proceedings of the 3Rd International Workshop on Distributed Statistical Computing, Vol. 124. Vienna, Austria; 2003.
[50] StokesM, ChenF, GunesF. An introduction to Bayesian analysis with SAS/STATR software, Proceedings of the SAS Global Forum 2014 Conference, SAS Institute Inc, Cary, USA (available at ). Citeseer; 2014.
[51] GiraudL, LangouJ, RozloznikM. The loss of orthogonality in the Gram‐Schmidt orthogonalization process. Comput Math Appl. 2005;50(7):1069‐1075. · Zbl 1085.65037
[52] ErnstOG, MuglerA, StarkloffHJ, UllmannE. On the convergence of generalized polynomial chaos expansions. ESAIM‐Math Model Num. 2012;46(2):317‐339. · Zbl 1273.65012
[53] ShiW, ZhangC. Error analysis of generalized polynomial chaos for nonlinear random ordinary differential equations. Appl Numer Math. 2012;62(12):1954‐1964. · Zbl 1255.65025
[54] PukelsheimF. The three sigma rule. Am Stat. 1994;48(2):88‐91.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.