×

The conjugacy problem in \(\mathrm{ Gl } ( n, \mathbb{Z} )\). (English) Zbl 1456.20004

Let \(T\) and \(U\) be elements of \(\mathrm{GL}(n,\mathbb{Q})\). The rational conjugacy problem asks if there exists \(X\in\mathrm{GL}(n, \mathbb{Q})\) such that \(XTX^{-1}=U\). It is well known that this can be decided effectively by computing and comparing the rational canonical forms of \(T\) and \(U\). More difficult is the integral conjugacy problem: decide whether there exists \(X\in\mathrm{GL}(n,\mathbb{Z})\) with \(XTX^{-1}=U\). Associated to the integral conjugacy problem is the centraliser problem: determine a generating set for \(C_{\mathbb{Z}}(T)=\{X\in\mathrm{GL}(n,\mathbb{Z}) \mid XTX^{-1}=T\}\). Since \(C_{\mathbb{Z}}(T)\) is arithmetic, the work of F. Grunewald and D. Segal [Ann. Math. (2) 112, 531–583 (1980; Zbl 0457.20047)] implies that it is both finitely generated and finitely presented. But no practical algorithm to compute a finite generating set for an arithmetic group is known.
In the article under review, the authors present a new algorithm that, given two matrices in \(\mathrm{GL}(n,\mathbb{Q})\), decides if they are conjugate in \(\mathrm{GL}(n, \mathbb{Z})\) and, if so, determines a conjugating matrix. They also give an algorithm to construct a generating set for \(C_{\mathbb{Z}}(T)\) for \(T \in\mathrm{GL}(n,\mathbb{Q})\). To do this they reduce these problems, respectively, to the isomorphism and automorphism group problems for certain modules over rings of the form \(\mathcal{O}_{K}[y]/(y^{\ell})\), where \(\mathcal{O}_{K}\) is the maximal order of an algebraic number field \(K\) and \(\ell \in \mathbb{N}\), and then provide algorithms to solve the latter. The algorithms are effective and usable in practice, the authors provide their implementation using the MAGMA software.

MSC:

20C15 Ordinary representations and characters
20D05 Finite simple groups and their classification
11Y40 Algebraic number theory computations
20-08 Computational methods for problems pertaining to group theory

Citations:

Zbl 0457.20047

Software:

Magma

References:

[1] H.Bass, J.Milnor and J.‐P.Serre, ‘Solution of the congruence subgroup problem for \(\operatorname{ SL }_n ( n \geqslant 3 )\) and \(\operatorname{ Sp }_{2 n} ( n \geqslant 2 )\)’, Publ. Math. Inst. Hautes Études Sci.33 (1967) 59-137. · Zbl 0174.05203
[2] W.Bosma, J.Cannon and C.Playoust, ‘The Magma Algebra System I: The User Language’, J. Symbolic Comput.24 (1997) 235-265. · Zbl 0898.68039
[3] O.Braun and R.Coulangeon, ‘Perfect lattices over imaginary quadratic number fields’, Math. Comp.84 (2015) 1451-1467. · Zbl 1334.11053
[4] H.Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics (Springer, Berlin, 1993). · Zbl 0786.11071
[5] H.Cohen, Advanced topics in computational number theory, Graduate Texts in Mathematics (Springer, New York, 2000). · Zbl 0977.11056
[6] J.Elstrodt, F.Grunewald and J.Mennicke, Groups acting on hyperbolic space. Harmonic analysis and number theory, Springer Monographs in Mathematics (Springer, Berlin, 1998). · Zbl 0888.11001
[7] F. J.Grunewald, ‘Solution of the conjugacy problem in certain arithmetic groups’, Word problems II, Studies in Logic and the Foundations of Mathematics 95 (eds S. I.Adian (ed.), W. W.Boone (ed.) and G.Higman (ed.); North‐Holland, Amsterdam‐New York, 1980) 101-139. · Zbl 0447.20031
[8] F.Grunewald and N. K.Iyudu, ‘The conjugacy problem for \(2 \times 2\) matrices over polynomial rings’, Sovrem. Mat. Prilozh.30 (2005) 31-45.
[9] F.Grunewald and D.Segal, ‘Some General Algorithms. I: Arithmetic Groups’, Ann. of Math.112 (1980) 531-583. · Zbl 0457.20047
[10] D. F.Holt, B.Eick and E. A.O’Brien, Handbook of computational group theory, Discrete Mathematics and its Applications (Chapman & Hall/CRC, Boca Raton, FL, 2005). · Zbl 1091.20001
[11] D.Husert, ‘Similarity of integer matrices’, PhD Thesis, University of Paderborn, 2016.
[12] O.Karpenkov, ‘Multidimensional Gauss reduction theory for conjugacy classes of \(\operatorname{ SL } ( n , \mathbb{Z} )\)’, J. Théor. Nombres Bordeaux25 (2013) 99-109. · Zbl 1273.11111
[13] C. G.Latimer and C. C.MacDuffee, ‘A correspondence between classes of ideals and classes of matrices’, Ann. of Math. (2) 34 (1933) 313-316. · JFM 59.0110.02
[14] S.Marseglia, ‘Computing the ideal class monoid of an order’, Preprint, 2018, arXiv:1805.09671.
[15] J.Opgenorth, W.Plesken and T.Schulz, ‘Crystallographic algorithms and tables’, Acta Crystallogr. Sect. A54 (1998) 517-531. · Zbl 1176.20051
[16] R. A.Sarkisjan, ‘The conjugacy problem for collections of integral matrices’, Mat. Zametki25 (1979) 811-824, 956. · Zbl 0407.10046
[17] P. F.Stebe, ‘Conjugacy separability of groups of integer matrices’, Proc. Amer. Math. Soc.32 (1972) 1-7. · Zbl 0242.20048
[18] R. G.Swan, ‘Generators and relations for certain special linear groups’, Adv. Math.6 (1971) 1-77. · Zbl 0221.20060
[19] L. N.Vaser \(\text{s\breve{}}\) teĭn, ‘The group \(S L_2\) over Dedekind rings of arithmetic type’, Mat. Sb. (N.S.)89 (1972) 313-322, 351.
[20] H.Zassenhaus, ‘Neuer Beweis der Endlichkeit der Klassenzahl bei unimodularer Äquivalenz endlicher ganzzahliger Substitutionsgruppen’, Abh. Math. Semin. Univ. Hambg.12 (1937) 187-220.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.