×

Relative global dimensions and stable homotopy categories. (English) Zbl 1456.18009

Let \(R\) be a ring. An \(F\) a left \(R\)-module is type \(FP_\infty\) if \(F\) has projective resolution with finitely generated terms. A left (resp. right) \(R\)-modules \(A\) is absolutely clean (resp. level) if it satisfies \(\mathrm{Ext}_R^1(F,A)=0\) (resp. \(\mathrm{Tor}_1^R(A,F)=0\)) for all left \(R\)-modules of type \(FP_\infty\), \(F\). With this notion D. Bravo et al. [“The stable module category of a general ring”, Preprint, arXiv:1405.5768] define Gorenstein AC-projective (resp. AC- injective and AC-flat) modules extending the classical notions. The authors study the dimensions of modules using resolutions by modules of the preceding classes, thus they introduce Gorenstein AC-projective (resp. injective and flat) dimension of left \(R\)-modules and the global dimension of the ring associated. Several relations among these dimension are obtained. It is shown that left (resp. right) coherent rings have finite global Gorenstein AC-injective (resp. AC-projective) dimension. Next, the compactly generated properties of the singularity categories and stable categories with respect to Gorenstein AC-homological modules are considered. For a ring with finite global Gorentein AC-injective dimension, the stable category of Gorenstein AC-injective left modules is compactly generated. As a consequence, it is obtained that for a left coherent ring with finite Gorenstein global dimension, the stable category of Gorenstein injective is compactly generated. This results was proved by A. Beligiannis for right coherent and left perfect or left Morita ring with finite Gorenstein global dimension [Math. Scand. 89, No. 1, 5–45 (2001; Zbl 1023.55009)] and for Iwanaga-Gorenstein rings by M. Hovey [Math. Z. 241, No. 3, 553–592 (2002; Zbl 1016.55010)] and X.-W. Chen [Math. Nachr. 284, No. 2–3, 199–212 (2011; Zbl 1244.18014)]. Several properties of Gorenstein AC-flat modules are studied in the Appendix.

MSC:

18G25 Relative homological algebra, projective classes (category-theoretic aspects)
18G20 Homological dimension (category-theoretic aspects)

References:

[1] Auslander, Maurice; Bridger, Mark, Stable module theory, 94 (1969), American Mathematical Society · Zbl 0204.36402
[2] Becerril, Víctor; Mendoza, Octavio; Pérez, Marco A.; Santiago, Valente, Frobenius pairs in abelian categories. Correspondences with cotorsion pairs, exact model categories, and Auslander-Buchweitz contexts, J. Homotopy Relat. Struct., 14, 1, 1-50 (2019) · Zbl 1435.18011 · doi:10.1007/s40062-018-0208-4
[3] Beligiannis, Apostolos, The homological theory of contravariantly finite subcategories: Auslander-Buchweitz contexts, Gorenstein categories and (co-)stabilization, Commun. Algebra, 28, 10, 4547-4596 (2000) · Zbl 0964.18006 · doi:10.1080/00927870008827105
[4] Beligiannis, Apostolos, Homotopy theory of modules and Gorenstein rings, Math. Scand., 89, 1, 5-45 (2001) · Zbl 1023.55009 · doi:10.7146/math.scand.a-14329
[5] Beligiannis, Apostolos; Reiten, Idun, Homological and homotopical aspects of torsion theories, 883, viii+207 p. pp. (2007), American Mathematical Society · Zbl 1124.18005
[6] Bennis, Driss, Rings over which the class of Gorenstein flat modules is closed under extensions, Commun. Algebra, 37, 3, 855-868 (2009) · Zbl 1205.16006 · doi:10.1080/00927870802271862
[7] Bennis, Driss; Mahdou, Najib, Global Gorenstein dimensions, Proc. Am. Math. Soc., 138, 2, 461-465 (2010) · Zbl 1205.16007 · doi:10.1090/S0002-9939-09-10099-0
[8] Bravo, Daniel; Estrada, Sergio; Iacob, Alina, \({\rm{FP}}_n\)-injective, \({\rm{FP}}_n\)-flat covers and preenvelopes, and Gorenstein AC-flat covers, Algebra Colloq., 25, 2, 319-334 (2018) · Zbl 1427.18007 · doi:10.1142/S1005386718000226
[9] Bravo, Daniel; Gillespie, James; Hovey, Mark, The stable module category of a general ring (2014)
[10] Buchweitz, Ragnar-Olaf, Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings (1986)
[11] Chen, Xiao-Wu, Relative singularity categories and Gorenstein-projective modules, Math. Nachr., 284, 2-3, 199-212 (2011) · Zbl 1244.18014 · doi:10.1002/mana.200810017
[12] Christensen, Lars Winther; Estrada, Sergio; Thompson, Peder, Homotopy categories of totally acyclic complexes with applications to the flat-cotorsion theory (2019)
[13] Di, Zhenxing; Liu, Zhongkui; Yang, Xiaoyan; Zhang, Xiaoxiang, Triangulated equivalence between a homotopy category and a triangulated quotient category, J. Algebra, 506, 297-321 (2018) · Zbl 1391.18017
[14] Emmanouil, Ioannis, On the finiteness of Gorenstein homological dimensions, J. Algebra, 372, 376-396 (2012) · Zbl 1286.13014 · doi:10.1016/j.jalgebra.2012.09.018
[15] Enochs, Edgar E.; Jenda, Overtoun M. G., Gorenstein injective and projective modules, Math. Z., 220, 4, 611-633 (1995) · Zbl 0845.16005 · doi:10.1007/BF02572634
[16] Enochs, Edgar E.; Jenda, Overtoun M. G.; Torrecillas, Blas, Gorenstein flat modules, J. Nanjing Univ., Math. Biq., 10, 1, 1-9 (1993) · Zbl 0794.16001
[17] Enochs, Edgar E.; Jenda, Overtoun M. G.; Xu, Jinzhong, Orthogonality in the category of complexes, Math. J. Okayama Univ., 38, 25-46 (1996) · Zbl 0940.18006
[18] Estrada, Sergio; Gillespie, James, The projective stable category of a coherent scheme, Proc. R. Soc. Edinb., Sect. A, Math., 149, 1, 15-43 (2019) · Zbl 1423.18053 · doi:10.1017/S0308210517000385
[19] Estrada, Sergio; Iacob, Alina; Pérez, Marco A., Model structures and relative Gorenstein flat modules and chain complexes (2018)
[20] Gillespie, James, The flat model structure on \({\rm{Ch}}({R})\), Trans. Am. Math. Soc., 356, 8, 3369-3390 (2004) · Zbl 1056.55011 · doi:10.1090/S0002-9947-04-03416-6
[21] Gillespie, James, Gorenstein complexes and recollements from cotorsion pairs, Adv. Math., 291, 859-911 (2016) · Zbl 1343.18013 · doi:10.1016/j.aim.2016.01.004
[22] Gillespie, James, Hereditary abelian model categories, Bull. Lond. Math. Soc., 48, 6, 895-922 (2016) · Zbl 1372.18001 · doi:10.1112/blms/bdw051
[23] Gillespie, James, On Ding injective, Ding projective and Ding flat modules and complexes, Rocky Mt. J. Math., 47, 8, 2641-2673 (2017) · Zbl 1443.16006 · doi:10.1216/RMJ-2017-47-8-2641
[24] Gillespie, James, On the homotopy category of AC-injective complexes, Front. Math. China, 12, 1, 97-115 (2017) · Zbl 1397.18035 · doi:10.1007/s11464-016-0551-x
[25] Gillespie, James, AC-Gorenstein rings and their stable module categories, J. Aust. Math. Soc., 107, 2, 181-198 (2019) · Zbl 1437.16010 · doi:10.1017/S1446788718000290
[26] Hovey, Mark, Cotorsion pairs, model category structures, and representation theory, Math. Z., 241, 3, 553-592 (2002) · Zbl 1016.55010 · doi:10.1007/s00209-002-0431-9
[27] Kirkman, Ellen; Kuzmanovich, James, On the global dimension of fibre products, Pac. J. Math., 134, 1, 121-132 (1988) · Zbl 0617.16014 · doi:10.2140/pjm.1988.134.121
[28] Krause, Henning, Smashing subcategories and the telescope conjecture—an algebraic approach, Invent. Math., 139, 1, 99-133 (2000) · Zbl 0937.18013 · doi:10.1007/s002229900022
[29] Krause, Henning, The stable derived category of a Noetherian scheme, Compos. Math., 141, 5, 1128-1162 (2005) · Zbl 1090.18006 · doi:10.1112/S0010437X05001375
[30] Mao, Lixin; Ding, Nanqing, Abelian groups, rings, modules, and homological algebra, 249, The cotorsion dimension of modules and rings, 217-233 (2006), Chapman & Hall/CRC · Zbl 1110.16005
[31] Orlov, Dmitri, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Tr. Mat. Inst. Steklova, 246, 240-262 (2004) · Zbl 1101.81093
[32] Šaroch, Jan; Šťovíček, Jan, Singular compactness and definability for \(\Sigma \)-cotorsion and Gorenstein modules, Sel. Math., New Ser., 26, 2, 40 p. pp. (2020) · Zbl 1444.16010
[33] Wang, Junpeng, Ding projective dimension of Gorenstein flat modules, Bull. Korean Math. Soc., 54, 6, 1935-1950 (2017) · Zbl 1426.16010
[34] Yang, Xiaoyan; Ding, Nanqing, On a question of Gillespie, Forum Math., 27, 6, 3205-3231 (2015) · Zbl 1347.18003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.