×

New upper bounds for the infinity norm of Nekrasov matrices. (English) Zbl 1456.15023

The Nekrasov condition is a form of diagonal dominance. Let \(A=[a_{ij}]\) be an \(n\times n\) complex matrix. Then \(A\) is a Nekrasov matrix if \(\left\vert a_{ii}\right\vert >h_{i}(A)\) for \(i=1,2,\dots,n\) where \[ h_{i}(A):=\sum_{j=1}^{i-1}\frac{|a_{ij}|}{|a_{jj}|}h_{j}(A)+\sum_{j=i+1}^{n}\left\vert a_{ij}\right\vert. \]
The authors give variations on different bounds on \(\left\Vert A^{-1}\right\Vert _{\infty}\) for a Nekrasov matrix. Numerical examples show that these bounds improve bounds given in [L. Yu. Kolotilina, J. Math. Sci., New York 199, No. 4, 432–437 (2014; Zbl 1309.15030); translation from Zap. Nauchn. Semin. POMI 419, 111–120 (2013); Y. Zhu and Y. Li, J. Yunnan Univ., Nat. Sci. 39, No. 1, 13–17 (2017; Zbl 1389.15011)].

MSC:

15A60 Norms of matrices, numerical range, applications of functional analysis to matrix theory
65F35 Numerical computation of matrix norms, conditioning, scaling
15B05 Toeplitz, Cauchy, and related matrices
Full Text: DOI

References:

[1] Z. Z. BAI ANDD. R. WANG,Generalized matrix multisplitting relaxation methods and their convergence, Numer. Math. J. Chin. Univ.2(1) 1993, 87-100. · Zbl 0849.65016
[2] L. CVETKOVIC´,H -matrix theory vs. Eigenvalue localization, Numer. Algor.42(3-4) 2006, 229-245. NEW UPPER BOUNDS FOR THE INFINITY NORM OFNEKRASOV MATRICES733 · Zbl 1107.15012
[3] L. CVETKOVIC´, V. KOSTIC AND´K. DOROSLOVACKICˇ,Max-norm bounds for the inverse of S Nekrasov matrices, Appl. Math. Compu.218(18) 2012, 9498-9503. · Zbl 1245.15006
[4] L. CVETKOVIC´, P. F. DAI, K. DOROSLOVACKIC ANDˇY. T. LI,Infinity norm bounds for the inverse of Nekrasov matrices, Appl. Math. Compu.219(10) 2013, 5020-5024. · Zbl 1283.15014
[5] M. GARC´IA-ESNAOLA ANDJ. M. PENA˜,Error bounds for linear complementarity problems of Nekrasov matrices, Numer. Algor.67(3) 2014, 655-667. · Zbl 1338.90406
[6] J. G. HU,Estimates of||B−1A||∞and their applications, Math. Numer. Sin.31982, 272-282. · Zbl 0538.65015
[7] J. G. HU,Scaling transformation and convergence of splittings of matrix, Math. Numer. Sin.51983, 72-78. · Zbl 0551.65016
[8] L. Y. KOLOTILINA,On bounding inverse to Nekrasov matrices in the infinity norm, Zap. Nauchn. Sem. POMI.4192013, 111-120.
[9] J. LIU, J. ZHANG, L. ZHOU ANDG. TU,The Nekrasov diagonally dominant degree on the Schur complement of Nekrasov matrices and its applications, Appl. Math. Comput.3202018, 251-263. · Zbl 1426.15060
[10] C. Q. LI ANDY. T. LI,Weakly chained diagonally dominant B -matrices and error bounds for linear complementarity problems, Numer. Algor.73(4) 2016, 985-998. · Zbl 1362.65063
[11] C. Q. LI ANDY. T. LI,Note on error bounds for linear complementarity problems for B -matrices, Appl. Math. Lett.572016, 108-113. · Zbl 1343.90096
[12] C. Q. LI, P. F. DAI ANDY. T. LI,New error bounds for linear complementarity problems of Nekrasov matrices and B -Nekrasov matrices, Numer. Algor.74(4) 2017, 997-1009. · Zbl 1372.65177
[13] C. Q. LI, H. PEI, A. GAO ANDY. T. LI,Improvements on the infinity norm bound for the inverse of Nekrasov matrices, Numer. Algor.71(3) 2016, 613-630. · Zbl 1353.15021
[14] W. LI,On Nekrasov matrices, Linear Algebra Appl.281(1-3) 1998, 87-96. · Zbl 0937.15019
[15] Q. TUO,Numerical Methods for Judging Generalized Diagonally Dominant Matrices, Doctor thesis, Xiangtan University, 2011,(In chinese).
[16] J. M. VARAH,A lower bound for the smallest singular value of a matrix, Linear Algebra Appl.11(1) 1975, 3-5. · Zbl 0312.65028
[17] F. WANG ANDD. SUN,New error bound for linear complementarity problems for B -matrices, Linear Multilinear A.66(11) 2018, 2156-2167. · Zbl 1401.90241
[18] Y.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.