×

Reconstruction algorithms for photoacoustic tomography in heterogeneous damping media. (English) Zbl 1455.94020

Summary: In this article, we study several reconstruction methods for the inverse source problem of photoacoustic tomography with spatially variable sound speed and damping. The backbone of these methods is the adjoint operators, which we thoroughly analyze in both the \(L^2\)- and \(H^1\)-settings. They are casted in the form of a nonstandard wave equation. We derive the well posedness of the aforementioned wave equation in a natural functional space and also prove the finite speed of propagation. Under the uniqueness and visibility condition, our formulations of the standard iterative reconstruction methods, such as Landweber’s and conjugate gradients (CG), achieve a linear rate of convergence in either \(L^2\)- or \(H^1\)-norm. When the visibility condition is not satisfied, the problem is severely ill posed and one must apply a regularization technique to stabilize the solutions. To that end, we study two classes of regularization methods: (i) iterative and (ii) variational regularization. In the case of full data, our simulations show that the CG method works best; it is very fast and robust. In the ill-posed case, the CG method behaves unstably. Total variation regularization method (TV), in this case, significantly improves the reconstruction quality.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
35L15 Initial value problems for second-order hyperbolic equations
47J25 Iterative procedures involving nonlinear operators

Software:

k-Wave

References:

[1] Acosta, S., Palacios, B.: Thermoacoustic tomography for an integro-differential wave equation modeling attenuation. J. Differ. Equ. 5, 1984-2010 (2018) · Zbl 1432.35237 · doi:10.1016/j.jde.2017.10.012
[2] Agranovsky, M., Kuchment, P.: Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed. Inverse Probl. 23, 2089 (2007) · Zbl 1126.35087 · doi:10.1088/0266-5611/23/5/016
[3] Ammari, H., Bretin, E., Garnier, J., Wahab, A.: Time reversal in attenuating acoustic media. Contemp. Math. 548, 151-163 (2011) · Zbl 1232.35189 · doi:10.1090/conm/548/10841
[4] Ammari, H., Bretin, E., Jugnon, V., Wahab, A.: Photoacoustic imaging for attenuating acoustic media. In: Ammari, H. (ed.) Mathematical Modeling in Biomedical Imaging II, pp. 57-84. Springer (2012) · Zbl 1345.92084
[5] Arridge, S., Beard, P., Betcke, M., Cox, B., Huynh, N., Lucka, F., Ogunlade, O., Zhang, E.: Accelerated high-resolution photoacoustic tomography via compressed sensing. Phys. Med. Biol. 61, 8908 (2016) · doi:10.1088/1361-6560/61/24/8908
[6] Arridge, S.R., Betcke, M.M., Cox, B.T., Lucka, F., Treeby, B.E.: On the adjoint operator in photoacoustic tomography. Inverse Probl. 32, 115012 (2016) · Zbl 1354.35165 · doi:10.1088/0266-5611/32/11/115012
[7] Barannyk, L.L., Frikel, J., Nguyen, L.V.: On artifacts in limited data spherical radon transform: curved observation surface. Inverse Probl. 32, 015012 (2015) · Zbl 1332.35391 · doi:10.1088/0266-5611/32/1/015012
[8] Belhachmi, Z., Glatz, T., Scherzer, O.: A direct method for photoacoustic tomography with inhomogeneous sound speed. Inverse Probl. 32, 045005 (2016) · Zbl 1382.65289 · doi:10.1088/0266-5611/32/4/045005
[9] Burgholzer, P., Grün, H., Haltmeier, M., Nuster, R., Paltauf, G.: Compensation of acoustic attenuation for high-resolution photoacoustic imaging with line detectors. Proc. SPIE 6437, 643724 (2007) · doi:10.1117/12.700723
[10] Burgholzer, P., Matt, G.J., Haltmeier, M., Paltauf, G.: Exact and approximate imaging methods for photoacoustic tomography using an arbitrary detection surface. Phys. Rev. E 75, 046706 (2007) · doi:10.1103/PhysRevE.75.046706
[11] Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120-145 (2011) · Zbl 1255.68217 · doi:10.1007/s10851-010-0251-1
[12] Clason, C., Klibanov, M.V.: The quasi-reversibility method for thermoacoustic tomography in a heterogeneous medium. SIAM J. Sci. Comput. 30, 1-23 (2008) · Zbl 1159.65346 · doi:10.1137/06066970X
[13] Compani-Tabrizi, B.: K-space scattering formulation of the absorptive full fluid elastic scalar wave equation in the time domain. J. Acoust. Soc. Am. 79, 901-905 (1986) · doi:10.1121/1.393686
[14] Cox, B., Kara, S., Arridge, S., Beard, P.: k-space propagation models for acoustically heterogeneous media: application to biomedical photoacoustics. J. Acoust. Soc. Am. 121, 3453-3464 (2007) · doi:10.1121/1.2717409
[15] Chen, W., Holm, S.: Fractional laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. J. Acoust. Soc. Am. 115, 1424-1430 (2004) · doi:10.1121/1.1646399
[16] Dean-Ben, X.L., Buehler, A., Ntziachristos, V., Razansky, D.: Accurate model-based reconstruction algorithm for three-dimensional optoacoustic tomography. IEEE Trans. Med. Imaging 31, 1922-1928 (2012) · doi:10.1109/TMI.2012.2208471
[17] Elbau, P., Scherzer, O., Shi, C.: Singular values of the attenuated photoacoustic imaging operator. J. Differ. Equ. 263, 5330-5376 (2017) · Zbl 1401.35329 · doi:10.1016/j.jde.2017.06.018
[18] Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems, vol. 375. Springer, Berlin (1996) · Zbl 0859.65054 · doi:10.1007/978-94-009-1740-8
[19] Finch, D., Haltmeier, M., Rakesh: Inversion of spherical means and the wave equation in even dimensions. SIAM J. Appl. Math. 68, 392-412 (2007) · Zbl 1159.35073
[20] Finch, D., Rakesh, Patch, S.K.: Determining a function from its mean values over a family of spheres. SIAM J. Math. Anal. 35, 1213-1240 (2004). (electronic) · Zbl 1073.35144
[21] Frikel, J., Quinto, E.T.: Artifacts in incomplete data tomography with applications to photoacoustic tomography and sonar. SIAM J. Math. Anal. 75, 703-725 (2015) · Zbl 1381.44006 · doi:10.1137/140977709
[22] Haltmeier, M.: Inversion of circular means and the wave equation on convex planar domains. Comput. Math. Appl. 65, 1025-1036 (2013) · Zbl 1266.65160 · doi:10.1016/j.camwa.2013.01.036
[23] Haltmeier, M.: Universal inversion formulas for recovering a function from spherical means. SIAM J. Math. Anal. 46, 214-232 (2014) · Zbl 1292.44003 · doi:10.1137/120881270
[24] Haltmeier, M., Nguyen, L.V.: Analysis of iterative methods in photoacoustic tomography with variable sound speed. SIAM J. Imaging Sci. 10, 751-781 (2017) · Zbl 1371.35347 · doi:10.1137/16M1104822
[25] Hanke, M.: Conjugate Gradient Type Methods for Ill-Posed Problems, vol. 327. CRC Press, Boca Raton (1995) · Zbl 0830.65043
[26] Homan, A.: Multi-wave imaging in attenuating media. Inverse Probl. Imaging 7, 1235-1250 (2013) · Zbl 1292.35327 · doi:10.3934/ipi.2013.7.1235
[27] Hristova, Y.: Time reversal in thermoacoustic tomography—an error estimate. Inverse Probl. 25, 055008, 14 (2009) · Zbl 1167.35051 · doi:10.1088/0266-5611/25/5/055008
[28] Hristova, Y., Kuchment, P., Nguyen, L.: Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media. Inverse Probl. 24, 055006, 25 (2008) · Zbl 1180.35563 · doi:10.1088/0266-5611/24/5/055006
[29] Huang, C., Wang, K., Nie, L., Wang, L.V., Anastasio, M.A.: Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media. IEEE Trans. Med. Imaging 32, 1097-1110 (2013) · doi:10.1109/TMI.2013.2254496
[30] Javaherian, A., Holman, S.: A multi-grid iterative method for photoacoustic tomography. IEEE Trans. Med. Imaging 36, 696-706 (2017) · doi:10.1109/TMI.2016.2625272
[31] Kaltenbacher, B., Neubauer, A., Scherzer, O.: Iterative Regularization Methods for Nonlinear Ill-Posed Problems, Vol. 6 of Radon Series on Computational and Applied Mathematics. Walter de Gruyter GmbH & Co. KG, Berlin (2008) · Zbl 1145.65037 · doi:10.1515/9783110208276
[32] Kowar, R., Scherzer, O., Bonnefond, X.: Causality analysis of frequency-dependent wave attenuation. Math. Methods Appl. Sci. 34, 108-124 (2011) · Zbl 1381.76325 · doi:10.1002/mma.1344
[33] Kowar, R.: On time reversal in photoacoustic tomography for tissue similar to water. SIAM J. Imaging Sci. 7, 509-527 (2014) · Zbl 1391.35421 · doi:10.1137/130931904
[34] Kowar, R., Scherzer,O.: Photoacoustic imaging taking into account attenuation. In: Ammari, H. (ed.) Mathematics and Algorithms in Tomography II, Lecture Notes in Mathematics 2035, pp. 85-130. Springer (2012) · Zbl 1345.92089
[35] Kuchment, P.: The Radon Transform and Medical Imaging, vol. 85. SIAM, Philadelphia (2014) · Zbl 1282.92001
[36] Kuchment, P., Kunyansky, L.: Mathematics of thermoacoustic tomography. Eur. J. Appl. Math. 19, 191-224 (2008) · Zbl 1185.35327 · doi:10.1017/S0956792508007353
[37] Kunyansky, L.A.: Explicit inversion formulae for the spherical mean Radon transform. Inverse Probl. 23, 373-383 (2007) · Zbl 1127.44003 · doi:10.1088/0266-5611/23/1/021
[38] Kunyansky, L.A.: A series solution and a fast algorithm for the inversion of the spherical mean radon transform. Inverse Probl. 23, S11 (2007) · Zbl 1133.65107 · doi:10.1088/0266-5611/23/6/S02
[39] Leeman, S.; Hutchins, L.; Jones, JP; Alais, P. (ed.); Metbefell, AE (ed.), Bounded pulse propagation, No. 10, 427-435 (1982), Oxford · doi:10.1007/978-1-4684-3944-1_29
[40] La Riviere, P. J., Zhang, J., Anastasio, M. A.: Image reconstruction in optoacoustic tomography accounting for frequency-dependent attenuation. In: IEEE Nuclear Science Symposium Conference Record, p. 5 (2005)
[41] La Riviére, P.J., Zhang, J., Anastasio, M.A.: Image reconstruction in optoacoustic tomography for dispersive acoustic media. Opt. Lett. 31, 781-783 (2006) · doi:10.1364/OL.31.000781
[42] Liebler, M., Ginter, S., Dreyer, T., Riedlinger, R.E.: Full wave modeling of therapeutic ultrasound: efficient time-domain implementation of the frequency power-law attenuation. J. Acoust. Soc. Am. 116, 2742-2750 (2004) · doi:10.1121/1.1798355
[43] Nachman, A.I., Smith III, J.F., Waag, R.C.: An equation for acoustic propagation in inhomogeneous media with relaxation losses. J. Acoust. Soc. Am. 88, 1584-1595 (1990) · doi:10.1121/1.400317
[44] Natterer, F.: Photo-acoustic inversion in convex domains. Inverse Probl. Imaging 6, 315-320 (2012) · Zbl 1244.35080 · doi:10.3934/ipi.2012.6.315
[45] Nguyen, L.V.: A family of inversion formulas in thermoacoustic tomography. Inverse Probl. Imaging 3, 649-675 (2009) · Zbl 1183.92054 · doi:10.3934/ipi.2009.3.649
[46] Nguyen, L.V.: On artifacts in limited data spherical radon transform: flat observation surfaces. SIAM J. Math. Anal. 47, 2984-3004 (2015) · Zbl 1349.42027 · doi:10.1137/140980740
[47] Nguyen, L.V., Kunyansky, L.A.: A dissipative time reversal technique for photoacoustic tomography in a cavity. SIAM J. Imaging Sci. 9, 748-769 (2016) · Zbl 1515.35354 · doi:10.1137/15M1049683
[48] Palacios, B.: Reconstruction for multi-wave imaging in attenuating media with large damping coefficient. Inverse Probl. 32, 125008, 15 (2016) · Zbl 1362.35336 · doi:10.1088/0266-5611/32/12/125008
[49] Palamodov, V.P.: A uniform reconstruction formula in integral geometry. Inverse Probl. 28, 065014 (2012) · Zbl 1262.44001 · doi:10.1088/0266-5611/28/6/065014
[50] Paltauf, G., Nuster, R., Haltmeier, M., Burgholzer, P.: Experimental evaluation of reconstruction algorithms for limited view photoacoustic tomography with line detectors. Inverse Probl. 23, S81-S94 (2007) · Zbl 1138.92348 · doi:10.1088/0266-5611/23/6/S07
[51] Paltauf, G., Viator, J.A., Prahl, S.A., Jacques, S.L.: Iterative reconstruction algorithm for optoacoustic imaging. J. Opt. Soc. Am. 112, 1536-1544 (2002)
[52] Rosenthal, A., Ntziachristos, V., Razansky, D.: Acoustic inversion in optoacoustic tomography: a review. Curr. Med. Imaging Rev. 9, 318 (2013) · doi:10.2174/15734056113096660006
[53] Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational methods in imaging, volume 167 of applied mathematical sciences. Springer Science+Business Media LLC, Berlin/Heidelberg (2009) · Zbl 1177.68245
[54] Sidky, E.Y., Jørgensen, J.H., Pan, X.: Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm. Phys. Med. Biol. 57, 3065 (2012) · doi:10.1088/0031-9155/57/10/3065
[55] Stefanov, P., Uhlmann, G.: Thermoacoustic tomography with variable sound speed. Inverse Probl. 25, 075011, 16 (2009) · Zbl 1177.35256 · doi:10.1088/0266-5611/25/7/075011
[56] Stefanov, P., Uhlmann, G.: Thermoacoustic tomography arising in brain imaging. Inverse Probl. 27, 045004 (2011) · Zbl 1220.35195 · doi:10.1088/0266-5611/27/4/045004
[57] Stefanov, P., Yang, Y.: Multiwave tomography with reflectors: Landweber’s iteration. Inverse Probl. Imaging 11, 373-401 (2017) · Zbl 1359.35222 · doi:10.3934/ipi.2017018
[58] Szabo, T.L.: Time domain wave equations for lossy media obeying a frequency power law. J. Acoust. Soc. Am. 96, 491-500 (1994) · doi:10.1121/1.410434
[59] Taylor, M.E.: Pseudodifferential Operators, volume 34 of Princeton Mathematical Series. Princeton, NJ (1981) · Zbl 0453.47026
[60] Treeby, B.E., Cox, B.T.: k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 15, 021314 (2010) · doi:10.1117/1.3360308
[61] Treeby, B.E., Cox, B.T.: Modeling power law absorption and dispersion for acoustic propagation using the fractional laplacian. J. Acoust. Soc. Am. 127, 2741-2748 (2010) · doi:10.1121/1.3377056
[62] Treeby, B.E., Zhang, E.Z., Cox, B.: Photoacoustic tomography in absorbing acoustic media using time reversal. Inverse Probl. 26, 115003 (2010) · Zbl 1204.35178 · doi:10.1088/0266-5611/26/11/115003
[63] Wang, K., Schoonover, R.W., Su, R., Oraevsky, A., Anastasio, M.A.: Discrete imaging models for three-dimensional optoacoustic tomography using radially symmetric expansion functions. IEEE Trans. Med. Imaging 33, 1180-1193 (2014) · doi:10.1109/TMI.2014.2308478
[64] Wang, K., Su, R., Oraevsky, A.A., Anastasio, M.A.: Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography. Phys. Med. Biol. 57, 5399 (2012) · doi:10.1088/0031-9155/57/17/5399
[65] Wells, P.N.T.: Biomedical Ultrasonics. Academic Press, New York (1977)
[66] Xu, M., Wang, L.V.: Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E 71, 016706 (2005) · doi:10.1103/PhysRevE.71.016706
[67] Zhang, J., Anastasio, M.A., La Rivière, P.J., Wang, L.V.: Effects of different imaging models on least-squares image reconstruction accuracy in photoacoustic tomography. IEEE Trans. Med. Imaging 28, 1781-1790 (2009) · doi:10.1109/TMI.2009.2024082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.