×

Reductions of topologically massive gravity. II: First order realizations of second order Lagrangians. (English) Zbl 1455.83019

Summary: Second order degenerate Clément and Sarıoğlu-Tekin Lagrangians are casted into forms of various first order Lagrangians. The structures of the iterated tangent bundle and acceleration bundle are presented as a suitable geometric framework. Hamiltonian analyses of these equivalent formalisms are performed by means of the Dirac-Bergmann constraint algorithm. All formulations are shown to possess only second class constraints.
For Part I, see [the authors, ibid. 59, No. 1, 013510, 16 p. (2018; Zbl 1383.83108)].
©2020 American Institute of Physics

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
70S05 Lagrangian formalism and Hamiltonian formalism in mechanics of particles and systems
70H40 Relativistic dynamics for problems in Hamiltonian and Lagrangian mechanics
81T13 Yang-Mills and other gauge theories in quantum field theory

Citations:

Zbl 1383.83108

References:

[1] Deser, S.; Jackiw, R.; Templeton, S., Topologically massive gauge theories, Ann. Phys., 140, 2, 372-411 (1982) · doi:10.1016/0003-4916(82)90164-6
[2] Deser, S.; Jackiw, R.; Templeton, S., Three-dimensional massive gauge theories, Phys. Rev. Lett., 48, 15, 975-978 (1982) · doi:10.1103/physrevlett.48.975
[3] Chen, T.-j.; Fasiello, M.; Lim, E. A.; Tolley, A. J., Higher derivative theories with constraints: Exorcising Ostrogradski’s Ghost, J. Cosmol. Astropart. Phys., 2013, 2, 042 · doi:10.1088/1475-7516/2013/02/042
[4] Clément, G., Classical Quantum Gravity, 9, 2615 (1992) · Zbl 0770.53046 · doi:10.1088/0264-9381/9/12/006
[5] Crampin, M.; Sarlet, W.; Cantrijn, F., Higher-order differential equations and higher-order Lagrangian mechanics, Math. Proc. Cambridge Philos. Soc., 99, 3, 565-587 (1986) · Zbl 0609.58049 · doi:10.1017/s0305004100064501
[6] Colombo, L.; de Diego, D. M., Higher-order variational problems on lie groups and optimal control applications, J. Geom. Mech., 6, 4, 451-478 (2014) · Zbl 1307.70018 · doi:10.3934/jgm.2014.6.451
[7] Colombo, L.; De Léon, M.; Prieto-Martínez, P. D.; Román-Roy, N., Unified formalism for the generalized kth-order Hamilton-Jacobi problem, Int. J. Geom. Methods Mod. Phys., 11, 9, 1460037 (2014) · Zbl 1305.70039 · doi:10.1142/s0219887814600378
[8] Colombo, L.; Prieto-Martínez, P. D., Regularity properties of fiber derivatives associated with higher-order mechanical systems, J. Math. Phys., 57, 082901 (2016) · Zbl 1362.37118 · doi:10.1063/1.4960822
[9] Cruz, M.; Molgado, A.; Rojas, E., Hamiltonian dynamics of linear affine in acceleration theories (2013)
[10] Cruz, M.; Gómez-Cortés, R.; Molgado, A.; Rojas, E., Hamiltonian analysis for linearly acceleration-dependent Lagrangians, J. Math. Phys., 57, 6, 062903 (2016) · Zbl 1347.70029 · doi:10.1063/1.4954804
[11] Dunin-Barkowski, P. I.; Sleptsov, A. V., Geometric Hamiltonian formalism for reparameterization-invariant theories with higher derivatives, Theor. Math. Phys., 158, 1, 61-81 (2009) · Zbl 1241.70047 · doi:10.1007/s11232-009-0005-7
[12] Sarıoğlu, Ö.; Tekin, B., Topologically massive gravity as a Pais Uhlenbeck oscillator, Classical Quantum Gravity, 23, 24, 7541 (2006) · Zbl 1107.83052 · doi:10.1088/0264-9381/23/24/023
[13] Saunders, D. J., J. Phys. A: Math. Gen., 20, 339-349 (1987) · Zbl 0652.58002 · doi:10.1088/0305-4470/20/2/019
[14] Saito, Y.; Sugano, R.; Ohta, T.; Kimura, T., A dynamical formalism of singular Lagrangian system with higher derivatives, J. Math. Phys., 30, 5, 1122-1132 (1989) · Zbl 0682.70015 · doi:10.1063/1.528331
[15] Ostrogradsky, M., Mem. Ac. St. Petersbourg VI, 4, 385 (1850)
[16] Pais, A.; Uhlenbeck, G. E., On field theories with non-localized action, Phys. Rev., 79, 1, 145 (1950) · Zbl 0040.13203 · doi:10.1103/physrev.79.145
[17] Pons, J. M., Ostrogradski’s theorem for higher-order singular Lagrangians, Lett. Math. Phys., 17, 181-189 (1989) · Zbl 0688.70010 · doi:10.1007/bf00401583
[18] Prieto-Martínez, P. D.; Román-Roy, N., Lagrangian-Hamiltonian unified formalism for autonomous higher order dynamical systems, J. Phys. A: Math. Theor., 44, 38, 385203 (2011) · Zbl 1242.70031 · doi:10.1088/1751-8113/44/38/385203
[19] Prieto-Martínez, P. D.; Román-Roy, N., Unified formalism for higher order non-autonomous dynamical systems, J. Math. Phys., 53, 3, 032901 (2012) · Zbl 1274.37033 · doi:10.1063/1.3692326
[20] Rund, H., Canonical formalism for parameter-invariant integrals in the calculus of variations whose Lagrange functions involve second-order derivatives, Ann. Mat. Pura Appl., 64, 99-107 (1964) · Zbl 0124.05603 · doi:10.1007/bf02410049
[21] Rashid, M. S.; Khalil, S. S., Hamiltonian description of higher order Lagrangians, Int. J. Mod. Phys. A, 11, 25, 4551-4559 (1996) · Zbl 1044.70505 · doi:10.1142/s0217751x96002108
[22] Shadwick, W. F., Lett. Math. Phys., 6, 409-416 (1982) · Zbl 0514.58013 · doi:10.1007/bf00405859
[23] Bergmann, P. G., Helv. Phys. Acta, Suppl., 4, 79 (1956)
[24] Bolonek, K.; Kosiński, P., Hamiltonian structures for Pais-Uhlenbeck oscillator, Acta Phys. Polonica, 36, 2115-2131 (2005)
[25] Dirac, P. A. M., Lectures on Quantum Mechanics (1964), Yeshiva University: Yeshiva University, New York · Zbl 0141.44603
[26] Dirac, P. A. M., Generalized Hamiltonian dynamics, Proc. R. Soc. London, Ser. A, 246, 1246, 326-332 (1958) · Zbl 0080.41402 · doi:10.1098/rspa.1958.0141
[27] Skinner, R.; Rusk, R., Generalized Hamiltonian dynamics. II. Gauge transformations, J. Math. Phys., 24, 11, 2595-2601 (1983) · Zbl 0556.70013 · doi:10.1063/1.525655
[28] Sudarshan, E. C. G.; Mukunda, N., Classical Dynamics: A Modern Perspective (1974), Wiley: Wiley, New York · Zbl 0329.70001
[29] Çağatay Uçgun, F.; Esen, O.; Gümral, H., Reductions of topologically massive gravity I: Hamiltonian analysis of second order degenerate Lagrangians, J. Math. Phys., 59, 013510 (2018) · Zbl 1383.83108 · doi:10.1063/1.5021948
[30] Campos, C. M.; de León, M.; De Diego, D. M.; Vankerschaver, J., Unambiguous formalism for higher order Lagrangian field theories, J. Phys. A: Math. Theor., 42, 47, 475207 (2009) · Zbl 1231.58005 · doi:10.1088/1751-8113/42/47/475207
[31] Pons, J. M., On Dirac’s incomplete analysis of gauge transformations, Stud. Hist. Philos. Sci. Part B, 36, 3, 491-518 (2005) · Zbl 1222.81217 · doi:10.1016/j.shpsb.2005.04.004
[32] Andrzejewski, K.; Gonera, J.; Machalski, P.; Maślanka, P., Modified Hamiltonian formalism for higher-derivative theories, Phys. Rev. D, 82, 4, 045008 (2010) · doi:10.1103/physrevd.82.045008
[33] Schmidt, H. J., Stability and Hamiltonian formulation of higher derivative theories, Phys. Rev. D, 49, 12, 6354 (1994) · doi:10.1103/physrevd.49.6354
[34] Deriglazov, A., Classical Mechanics: Hamiltonian and Lagrangian Formalism (2010), Springer · Zbl 1206.70001
[35] Esen, O.; Guha, P., On the geometry of the Schmidt-Legendre transformation, J. Geom. Mech., 10, 3, 251-291 · Zbl 1411.70029 · doi:10.3934/jgm.2018010
[36] Rosado María, E.; Muñoz Masqué, J., Second-order Lagrangians admitting a first-order Hamiltonian formalism, Ann. Mat. Pura Appl., 197, 357-397 (2018) · Zbl 1387.58022 · doi:10.1007/s10231-017-0683-y
[37] de León, M.; Rodrigues, P. R., Generalized Classical Mechanics and Field Theory: A Geometrical Approach of Lagrangian and Hamiltonian Formalisms Involving Higher Order Derivatives (2011), Elsevier
[38] Lukierski, J.; Stichel, P. C.; Zakrzewski, W. J., Galilean-invariant (2+1)-dimensional models with a Chern-Simons-like term and D=2 noncommutative geometry, Ann. Phys., 260, 224-249 (1997) · Zbl 0974.37041 · doi:10.1006/aphy.1997.5729
[39] Mannheim, P. D.; Davidson, A., Dirac quantization of the Pais-Uhlenbeck fourth order oscillator, Phys. Rev. A, 71, 4, 042110 (2005) · Zbl 1227.81222 · doi:10.1103/physreva.71.042110
[40] Suri, A., Higher order tangent bundles, Mediterr. J. Math., 14, 5, 14 (2017) · Zbl 1364.58003 · doi:10.1007/s00009-016-0812-7
[41] Urban, Z.; Krupka, D., The Zermelo conditions and higher order homogeneous functions, Publ. Math.-Debrecen, 82, 1, 59-76 (2013) · Zbl 1299.34036 · doi:10.5486/pmd.2013.5265
[42] Vitagliano, L., The Lagrangian-Hamiltonian formalism for higher order field theories, J. Geom. Phys., 60, 6, 857-873 (2010) · Zbl 1208.70027 · doi:10.1016/j.geomphys.2010.02.003
[43] Zermelo, E., Untersuchungen zur Variationsrechnung (1894), Friedrich-Wilhelms-Universität: Friedrich-Wilhelms-Universität, Berlin · JFM 25.0649.02
[44] Tulczyjew, W. M., The legendre transformation, Ann.IHP Phys. Theor., 27, 1, 101-114 (1977) · Zbl 0365.58011
[45] Grabowski, J.; Rotkiewicz, M., Higher vector bundles and multi-graded symplectic manifolds, J. Geom. Phys., 59, 9, 1285-1305 (2009) · Zbl 1171.58300 · doi:10.1016/j.geomphys.2009.06.009
[46] Gràcia, X.; Pons, J. M.; Román-Roy, N., J. Math. Phys., 32, 2744 (1991) · Zbl 0778.58025 · doi:10.1063/1.529066
[47] Horák, M.; KolářHorsk, I., Czeck. Math. J., 33, 467-475 (1983) · Zbl 0545.58004
[48] Kasper, U., Finding the Hamiltonian for cosmological models in fourth-order gravity theories without resorting to the Ostrogradski or Dirac formalism, Gen. Relat. Gravitation, 29, 2, 221-233 (1997) · Zbl 0882.58064 · doi:10.1023/a:1010292128733
[49] Keller, J.; Rodríguez-Romo, S., Multivectorial generalization of the Cartan map, J. Math. Phys., 32, 1591-1598 (1991) · Zbl 0744.53005 · doi:10.1063/1.529271
[50] Kondo, K., “Epistemological foundations of quasi-microscopic phenomena from the standpoint of Finsler’s and Kawaguchi’s higher order geometry,” Post RAAG Reports No. 241, 242, 243, 1991. · Zbl 0784.53013
[51] Krupková, O., A geometric setting for higher-order Dirac-Bergmann theory of constraints, J. Math. Phys., 35, 12, 6557-6576 (1994) · Zbl 0823.70016 · doi:10.1063/1.530691
[52] de León, M.; Marín-Solano, J.; Marrero, J. C.; Muñoz-Lecanda, M. C.; Román-Roy, N., Singular Lagrangian systems on jet bundles, Fortschr. Phys., 50, 105-169 (2002) · Zbl 1010.37031 · doi:10.1002/1521-3978(200203)50:2<105::aid-prop105>3.0.co;2-n
[53] de León, M.; Pitanga, P.; Rodrigues, P. R., Symplectic reduction of higher order Lagrangian systems with symmetry, J. Math. Phys., 35, 12, 6546-6556 (1994) · Zbl 0824.70012 · doi:10.1063/1.530890
[54] Govaerts, J.; Rashid, M. S. (1994)
[55] Nakamura, T.; Hamamoto, S., Higher derivatives and canonical formalisms, Prog. Theor. Phys., 95, 3, 469-484 (1996) · doi:10.1143/ptp.95.469
[56] Nesterenko, V. V., Singular Lagrangians with higher derivatives, J. Phys. A: Math. Gen., 22, 10, 1673 (1989) · Zbl 0695.58014 · doi:10.1088/0305-4470/22/10/021
[57] Abraham, R.; Marsden, J. E., Foundations of Mechanics (1978), Benjamin-Cummings: Benjamin-Cummings, Reading, MA · Zbl 0393.70001
[58] Schmidt, H. J., An alternate Hamiltonian formulation of fourth-order theories and its application to cosmology (1995)
[59] Skinner, R., First order equations of motion for classical mechanics, J. Math. Phys., 24, 11, 2581-2588 (1983) · Zbl 0532.70009 · doi:10.1063/1.525653
[60] Skinner, R.; Rusk, R., Generalized Hamiltonian dynamics. I. Formulation on T^*Q ⊕ TQ, J. Math. Phys., 24, 11, 2589-2594 (1983) · Zbl 0556.70012 · doi:10.1063/1.525654
[61] Andrzejewski, K.; Gonera, J.; Maslanka, P., A note on the Hamiltonian formalism for higher-derivative theories (2007)
[62] Batlee, C.; Gomis, J.; Pons, J. M.; Roman-Roy, N., Lagrangian and Hamiltonian constraints for second-order singular Lagrangians, J. Phys. A: Math. Gen., 21, 2693-2703 (1988) · Zbl 0658.70017 · doi:10.1088/0305-4470/21/12/013
[63] Gay-Balmaz, F.; Holm, D. D.; Ratiu, T. S., Higher order Lagrange-Poincaré and Hamilton-Poincaré reductions, Bull. Braz. Math. Soc., 42, 4, 579-606 (2011) · Zbl 1319.70022 · doi:10.1007/s00574-011-0030-7
[64] Gerdt, V.; Khvedelidze, A.; Palii, Yu, 135 (2006), Cockcroft Institute: Cockcroft Institute, Daresbury, UK
[65] Gotay, M. J.; Nester, J. M., Ann. IHP Phys. Théo., 30, 129 (1979) · Zbl 0414.58015
[66] Gotay, M. J.; Nester, J. M., Generalized constraint algorithm and special presymplectic manifolds, Geometric Methods in Mathematical Physics, 78-104 (1980), Springer Berlin Heidelberg · Zbl 0438.58016
[67] Gotay, M. J.; Nester, J. M., Apartheid in the Dirac theory of constraints, J. Phys. A: Math. Gen., 17, 15, 3063 (1984) · doi:10.1088/0305-4470/17/15/023
[68] Gotay, M. J.; Nester, J. M.; Hinds, G., Presymplectic manifolds and the Dirac Bergmann theory of constraints, J. Math. Phys., 19, 11, 2388-2399 (1978) · Zbl 0418.58010 · doi:10.1063/1.523597
[69] Cendra, H.; Marsden, J. E.; Ratiu, T. S., Lagrangian reduction by stages, Am. Math. Soc., 152, 722, 1840979 (2001) · Zbl 1193.37072 · doi:10.1090/memo/0722
[70] Marsden, J. E.; Ratiu, T., Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems (1998), Springer Science and Business Media
[71] Masterov, I., An alternative Hamiltonian formulation for the Pais-Uhlenbeck oscillator, Nucl. Phys. B, 902, 95-114 (2016) · Zbl 1332.81059 · doi:10.1016/j.nuclphysb.2015.11.011
[72] Masterov, I., The odd-order Pais-Uhlenbeck oscillator, Nucl. Phys. B, 907, 495-508 (2016) · Zbl 1336.81032 · doi:10.1016/j.nuclphysb.2016.04.025
[73] Mostafazadeh, A., A Hamiltonian formulation of the Pais-Uhlenbeck oscillator that yields a stable and unitary quantum system, Phys. Lett. A, 375, 2, 93-98 (2010) · Zbl 1241.70023 · doi:10.1016/j.physleta.2010.10.050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.