×

A three-equation model for thin films down an inclined plane. (English) Zbl 1455.76017

Summary: We derive a new model for thin viscous liquid films down an inclined plane. With an asymptotic expansion in the long-wave limit, the Navier-Stokes equations and the work-energy theorem are averaged over the fluid depth. This gives three equations for the mass, momentum and energy balance which have the mathematical structure of the Euler equations of compressible fluids with relaxation source terms, diffusive and capillary terms. The three variables of the model are the fluid depth, the average velocity and a third variable called enstrophy, related to the variance of the velocity. The equations are numerically solved by classical schemes which are known to be reliable and robust. The model gives satisfactory results both for the neutral stability curves and for the depth profiles of wavy films produced by a periodical forcing or by a random noise perturbation. The numerical calculations agree fairly well with experimental measurements of J. Liu and J. P. Gollub [“Solitary wave dynamics of film flows”, Phys. Fluids 6, No. 5, 1702–1712 (1994; doi:10.1063/1.868232)]. The calculation of the wall shear stress below the waves indicates a flow reversal at the first depth minimum downstream of the main hump, in agreement with experiments of J. Tihon et al. [“Solitary waves on inclined films: their characteristics and the effects on wall shear stress”, Exp. Fluids 41, 79–89 (2006; doi:10.1007/s00348-006-0158-1)].

MSC:

76A20 Thin fluid films
76D33 Waves for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Abderrahmane, H. A.; Vatistas, G. H., Improved two-equation model for thin layer fluid flowing down an inclined plane problem, Phys. Fluids, 19, (2007) · Zbl 1182.76003 · doi:10.1063/1.2771660
[2] Alekseenko, S. V.; Nakoryakov, V. E.; Pokusaev, B. G., Wave formation on vertical falling liquid films, Intl J. Multiphase Flow, 11, 5, 607-627, (1985) · Zbl 0578.76030 · doi:10.1016/0301-9322(85)90082-5
[3] Bach, P.; Villadsen, J., Simulation of the vertical flow of a thin, wavy film using a finite-element method, Intl J. Mass Transfer, 27, 6, 815-827, (1984) · Zbl 0543.76040 · doi:10.1016/0017-9310(84)90002-4
[4] Benjamin, T. B., Wave formation in laminar flow down an inclined plane, J. Fluid Mech., 2, 554-574, (1957) · Zbl 0078.18003 · doi:10.1017/S0022112057000373
[5] Benney, D. J., Long waves on liquid films, J. Math. Phys., 45, 150-155, (1966) · Zbl 0148.23003 · doi:10.1002/sapm1966451150
[6] Bresch, D.; Couderc, F.; Noble, P.; Vila, J. P., A generalization of the quantum Bohm identity: hyperbolic CFL condition for Euler-Korteweg equations, C. R. Math., 354, 1, 39-43, (2016) · Zbl 1338.35386 · doi:10.1016/j.crma.2015.09.020
[7] Brevdo, L.; Laure, P.; Dias, F.; Bridges, T. J., Linear pulse structure and signalling in a film flow on an inclined plane, J. Fluid Mech., 396, 37-71, (1999) · Zbl 0982.76037 · doi:10.1017/S0022112099005790
[8] Chakraborty, S.; Nguyen, P.-K.; Ruyer-Quil, C.; Bontozoglou, V., Extreme solitary waves on falling liquid films, J. Fluid Mech., 745, 564-591, (2014) · doi:10.1017/jfm.2014.91
[9] Chang, H. -C.; Demekhin, E. A.; Kalaidin, E., Simulation of noise-driven dynamics on a falling film, AIChE J., 42, 6, 1553-1568, (1996) · doi:10.1002/aic.690420607
[10] Chang, H. -C.; Demekhin, E. A.; Kopelevich, D. I., Nonlinear evolution of waves on a vertically falling film, J. Fluid Mech., 250, 433-480, (1993) · Zbl 0771.76054 · doi:10.1017/S0022112093001521
[11] Demekhin, E. A.; Demekhin, I. A.; Shkadov, V. Y., Solitons in viscous films flowing down a vertical wall, Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, 4, 9-16, (1983) · Zbl 0576.76036
[12] Gavrilyuk, S. L.; Perepechko, Y. V., Variational approach to constructing hyperbolic models of two-velocity media, Prikl. Mekh. Tekh. Fiz., 39, 5, 39-54, (1998) · Zbl 0930.76006
[13] Joo, S. W.; Davis, S. H.; Bankoff, S. G., Long-wave instabilities of heated falling films: two-dimensional theory of uniform layers, J. Fluid Mech., 230, 117-146, (1991) · Zbl 0728.76047 · doi:10.1017/S0022112091000733
[14] Kalliadasis, S.; Ruyer-Quil, C.; Scheid, B.; Velarde, M. G., Falling Liquid Films, (2012), Springer · Zbl 1231.76001 · doi:10.1007/978-1-84882-367-9
[15] Kapitza, P. L.1948aWave flow of thin layers of a viscous fluid: Part I. Free flow. Zh. Exper. Teor. Fiz.18, 3-18; (in Russian).
[16] Kapitza, P. L.1948bWave flow of thin layers of a viscous fluid: Part II. Fluid flow in the presence of continuous gas flow and heat transfer. Zh. Exper. Teor. Fiz.18, 19-28; (in Russian).
[17] Kapitza, P. L.; Kapitza, S. P., Wave flow of thin viscous liquid films, Zh. Exper. Teor. Fiz., 19, 105, (1949)
[18] Kuramoto, Y.; Tsuzuki, T., Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55, 2, 356-369, (1976) · doi:10.1143/PTP.55.356
[19] Lavalle, G.; Vila, J. P.; Blanchard, G.; Laurent, C.; Charru, F., A numerical reduced model for thin liquid films sheared by a gas flow, J. Comput. Phys., 301, 119-140, (2015) · Zbl 1349.76622 · doi:10.1016/j.jcp.2015.08.018
[20] Liu, J.; Gollub, J. P., Solitary wave dynamics of film flows, Phys. Fluids, 6, 1702-1712, (1994) · doi:10.1063/1.868232
[21] Liu, J.; Paul, J. D.; Gollub, J. P., Measurements of the primary instabilities of film flows, J. Fluid Mech., 250, 69-101, (1993) · doi:10.1017/S0022112093001387
[22] Luchini, P.; Charru, F., Consistent section-averaged equations of quasi-one-dimensional laminar flow, J. Fluid Mech., 656, 337-341, (2010) · Zbl 1197.76044 · doi:10.1017/S0022112010002594
[23] Malamataris, N. A.; Vlachogiannis, M.; Bontozoglou, V., Solitary waves on inclined films: flow structure and binary interactions, Phys. Fluids, 14, 3, 1082-1094, (2002) · Zbl 1185.76441 · doi:10.1063/1.1449465
[24] Mudunuri, R. R.; Balakotaiah, V., Solitary waves on thin falling films in the very low forcing frequency limit, AIChE J., 52, 12, 3995-4003, (2006) · doi:10.1002/aic.11015
[25] Nakoryakov, V. E.; Pokusaev, B. G.; Alekseenko, S. V.; Orlov, V. V., Instantaneous velocity profile in a wavy fluid film, Inzh.-Fiz. Zh., 33, 3, 399-404, (1977)
[26] Nguyen, L. T.; Balakotaiah, V., Modeling and experimental studies of wave evolution on free falling viscous films, Phys. Fluids, 12, 9, 2236-2256, (2000) · Zbl 1184.76391 · doi:10.1063/1.1287612
[27] Noble, P.; Vila, J. P., Thin power-law film down an inclined plane: consistent shallow-water models and stability under large-scale perturbations, J. Fluid Mech., 735, 29-60, (2013) · Zbl 1294.76056 · doi:10.1017/jfm.2013.454
[28] Noble, P.; Vila, J. P., Stability theory for difference approximations of Euler Korteweg equations and application to thin film flows, SIAM J. Numer. Anal., 52, 6, 2770-2791, (2014) · Zbl 1309.76142 · doi:10.1137/130918009
[29] Nosoko, T.; Miyara, A., The evolution and subsequent dynamics of waves on a vertically falling liquid film, Phys. Fluids, 16, 4, 1118-1126, (2004) · Zbl 1186.76399 · doi:10.1063/1.1650840
[30] Novbari, E.; Oron, A., Energy integral method model for the nonlinear dynamics of an axisymetric thin liquid film falling on a vertical cylinder, Phys. Fluids, 21, (2009) · Zbl 1183.76389 · doi:10.1063/1.3154586
[31] Ooshida, T., Surface equation of falling film flows with moderate Reynolds number and large but finite Weber number, Phys. Fluids, 11, 11, 3247-3269, (1999) · Zbl 1149.76560 · doi:10.1063/1.870186
[32] Ostapenko, V. V., Conservation laws of shallow water theory and the Galilean relativity principle, J. Appl. Ind. Math., 8, 2, 274-286, (2014) · Zbl 1340.35205 · doi:10.1134/S1990478914020148
[33] Pumir, A.; Manneville, P.; Pomeau, Y., On solitary waves running down an inclined plane, J. Fluid Mech., 135, 27-50, (1983) · Zbl 0525.76016 · doi:10.1017/S0022112083002943
[34] Ramaswamy, B.; Chippada, S.; Joo, S. W., A full-scale numerical study of interfacial instabilities in thin-film flows, J. Fluid Mech., 325, 163-194, (1996) · Zbl 0889.76021 · doi:10.1017/S0022112096008075
[35] Richard, G. L.; Gavrilyuk, S. L., A new model of roll waves: comparison with Brock’s experiments, J. Fluid Mech., 698, 374-405, (2012) · Zbl 1250.76041 · doi:10.1017/jfm.2012.96
[36] Richard, G. L.; Gavrilyuk, S. L., The classical hydraulic jump in a model of shear shallow-water flows, J. Fluid Mech., 725, 492-521, (2013) · Zbl 1287.76089 · doi:10.1017/jfm.2013.174
[37] Roberts, A. J., Low-dimensional models of thin film fluid dynamics, Phys. Lett. A, 212, 63-71, (1996) · Zbl 1073.76515 · doi:10.1016/0375-9601(96)00040-0
[38] Ruyer-Quil, C.; Manneville, P., Improved modelling of flows down inclined planes, Eur. Phys. J. B, 15, 357-369, (2000) · doi:10.1007/s100510051137
[39] Ruyer-Quil, C.; Manneville, P., Further accuracy and convergence results on the modelling of flows down inclined planes by weighted-residual approximations, Phys. Fluids, 14, 170-183, (2002) · Zbl 1184.76467 · doi:10.1063/1.1426103
[40] Ruyer-Quil, C.; Manneville, P., On the speed of solitary waves running down a vertical wall, J. Fluid Mech., 531, 181-190, (2005) · Zbl 1070.76021 · doi:10.1017/S0022112005003885
[41] Salamon, T. R.; Armstrong, R. C.; Brown, R. A., Traveling waves on vertical films: numerical analysis using the finite element method, Phys. Fluids, 6, 2202-2220, (1994) · Zbl 0844.76024 · doi:10.1063/1.868222
[42] Shkadov, V. Y.1967Wave flow regimes of a thin layer of viscous fluid subject to gravity. Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza1, 43-51; (English translation in Fluid Dyn., 2, 29-34), 1970 (Faraday Press, NY).
[43] Sivashinsky, G. I., Nonlinear analysis of hydrodynamic instability in laminar flames. I: derivation of basic equations, Acta Astronaut., 4, 11, 1177-1206, (1977) · Zbl 0427.76047 · doi:10.1016/0094-5765(77)90096-0
[44] Teshukov, V. M., Gas-dynamics analogy for vortex free-boundary flows, J. Appl. Mech. Tech. Phys., 48, 3, 303-309, (2007) · Zbl 1150.76335 · doi:10.1007/s10808-007-0039-2
[45] Tihon, J.; Serifi, K.; Argyriadi, K.; Bontozoglou, V., Solitary waves on inclined films: their characteristics and the effects on wall shear stress, Exp. Fluids, 41, 79-89, (2006) · doi:10.1007/s00348-006-0158-1
[46] Trifonov, Y. Y., Stability and bifurcations of the wavy film flow down a vertical plate: the results of integral approaches and full-scale computations, Fluid Dyn. Res., 44, (2012) · Zbl 1309.76023 · doi:10.1088/0169-5983/44/3/031418
[47] Usha, R.; Uma, B., Modeling of stationary waves on a thin viscous film down an inclined plane at high Reynolds numbers and moderate Weber numbers using energy integral method, Phys. Fluids, 16, 7, 2679-2696, (2004) · Zbl 1186.76543 · doi:10.1063/1.1755704
[48] Yih, C. S., Stability of liquid flow down an inclined plane, Phys. Fluids, 6, 321-334, (1963) · Zbl 0116.19102 · doi:10.1063/1.1706737
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.