×

On weak solutions of highly degenerate SDEs. (English. Russian original) Zbl 1455.60077

Autom. Remote Control 81, No. 3, 398-410 (2020); translation from Avtom. Telemekh. 2020, No. 3, 28-43 (2020).
Summary: The existence and weak uniqueness of a weak solution of a highly degenerate stochastic differential equation, along with its local mixing property, are established via Girsanov’s transformation.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60H30 Applications of stochastic analysis (to PDEs, etc.)
Full Text: DOI

References:

[1] Menozzi, S., Parametrix Techniques and Martingale Problems for Some Degenerate Kolmogorov Equations, Electron. Commun. Probab., 16, 234-250 (2011) · Zbl 1225.60097 · doi:10.1214/ECP.v16-1619
[2] Priola, E., On Weak Uniqueness for Some Degenerate SDEs by Global L_p Estimates, Potential Anal., 42, 1, 247-281 (2015) · Zbl 1306.60077 · doi:10.1007/s11118-014-9432-7
[3] Campillo, F., Optimal Ergodic Control for a Class of Nonlinear Stochastic Systems, Proc. 28 IEEE Conf. Decision Control (CDC), Tampa, 1989, pp. 1190-1195.
[4] Campillo, F., Le Gland, F., and Pardoux, E., Approximation of a Stochastic Ergodic Control Problem, New Trends in Nonlinear Control Theory, Descusse, J., Fliess, M., Isidori, A., and Leborgne, D., Eds., CNRS, Nants, 1988, Lecture Notes in Control and Information Sciences, vol. 122, Springer, 1989, pp. 379-395. · Zbl 0688.49014
[5] Campillo, F.; Pardoux, E.; Karatzas, I.; Ocone, D., Numerical Methods in Ergodic Optimal Stochastic Control and Application, Proc. US-French Workshop on Applied Stochastic Analysis, 59-73 (1991), New Brunswick, New Jersey: Rutgers University, New Brunswick, New Jersey
[6] Nisio, M., On the Existence of Solutions of Stochastic Differential Equations, Osaka J. Math., 10, 1, 185-208 (1973) · Zbl 0268.60057
[7] Veretennikov, AY, On Stochastic Equations with Degenerate Diffusion with respect to Some of the Variables, Izv. Akad. Nauk SSSR, Ser. Mat., 47, 1, 189-196 (1983) · Zbl 0514.60056
[8] Chaudru de Raynal, P-E, Strong Existence and Uniqueness for Stochastic Differential Equation with Holder Drift and Degenerate Noise, Ann. l’Instit. Henri Poincaré, 53, 1, 259-286 (2017) · Zbl 1434.60137 · doi:10.1214/15-AIHP716
[9] Chaudru de Raynal, P.-E. and Menozzi, S., Regularization Effects of a Noise Propagating through a Chain of Differential Equations: An Almost Sharp Result. https://arxiv.org/abs/1710.03620.
[10] Delarue, F.; Menozzi, S., Density Estimates for a Random Noise Propagating through a Chain of Differential Equations, J. Funct. Anal., 259, 6, 1577-1630 (2010) · Zbl 1223.60037 · doi:10.1016/j.jfa.2010.05.002
[11] Girsanov, IV, On Transforming a Class of Stochastic Processes by Absolutely Continuous Substitution of Measures, Theory Probab. Appl., 3, 5, 285-301 (1960) · Zbl 0100.34004 · doi:10.1137/1105027
[12] Beneš, VE, Existence of Optimal Stochastic Control Laws, SIAM J. Control, 9, 3, 446-472 (1971) · Zbl 0203.47301 · doi:10.1137/0309034
[13] Abourashchi, N.; Veretennikov, AY, On Stochastic Averaging and Mixing, Theory Stoch. Proc., 1632, 1, 111-130 (2010) · Zbl 1224.60181
[14] Anulova, S.V. and Veretennikov, A.Yu., On Ergodic Properties of Degenerate Hybrid Stochastic Control Systems, Proc. 49 IEEE Conf. Decision Control (CDC), Atlanta, 2010, pp. 2292-2297.
[15] Anulova, S.V. Veretennikov, A.Yu., and Shcherbakov, P.S., Exponential Convergence of Multi-Dimensional Stochastic Mechanical Systems with Switching, Proc. 52 IEEE Conf. Decision Control (CDC), Florence, Italy, 2013, pp. 1217-1222.
[16] Klebaner, F.; Liptser, R., When a Stochastic Exponential Is a True Martingale. Extension of the Benes Method, Theory Probab. Appl., 58, 1, 38-62 (2014) · Zbl 1328.60111 · doi:10.1137/S0040585X97986382
[17] Veretennikov, AY, On Weak Solution of an SDE, 10th Vilnius Conf. Probab. Theory and Mathematical Statistics (2010), Vilnius: TEV, Vilnius
[18] Karatzas, I.; Shreve, SE, Brownian Motion and Stochastic Calculus (1991), New York: Springer, New York · Zbl 0734.60060
[19] Veretennikov, AY, Strong Solutions and Explicit Formulas for Solutions of Stochastic Integral Equations, Math. USSR Sb., 39, 3, 387-403 (1981) · Zbl 0462.60063 · doi:10.1070/SM1981v039n03ABEH001522
[20] Krylov, NV, Controlled Diffusion Processes (2009), Berlin: Springer, Berlin · Zbl 1171.93004
[21] Honore, I. Menozzi, S., and Chaudru de Raynal, P.-E., Strong Regularization by Brownian Noise Propagating through a Weak Hörmander Structure. https://arxiv.org/abs/1810.12225.
[22] Krylov, NV; Veretennikov, AY, Explicit Formulas for the Solutions of Stochastic Equations, Mat. Sb., 100, 142, 266-284 (1976) · Zbl 0353.60059
[23] Mishura, Yu.S. and Veretennikov, A.Yu., Existence and Uniqueness Theorems for Solutions of McKean-Vlasov Stochastic Equations. arXiv:1603.02212
[24] Gikhman, II; Skorokhod, AV, The Theory of Stochastic Processes III (1979), New York: Springer, New York · Zbl 0404.60061
[25] Krylov, NV, The Selection of a Markov Process from a Markov System of Processes, and the Construction of Quasi-diffusion Processes, Math. USSR Izv., 7, 3, 691-709 (1973) · Zbl 0295.60057 · doi:10.1070/IM1973v007n03ABEH001971
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.