×

Local solutions of the Landau equation with rough, slowly decaying initial data. (English. French summary) Zbl 1455.35214

Summary: We consider the Cauchy problem for the spatially inhomogeneous Landau equation with soft potentials in the case of large (i.e. non-perturbative) initial data. We construct a solution for any bounded, measurable initial data with uniform polynomial decay in the velocity variable, and that satisfies a technical lower bound assumption (but can have vacuum regions). For uniqueness in this weak class, we have to make the additional assumption that the initial data is Hölder continuous. Our hypotheses are much weaker, in terms of regularity and decay, than previous large-data well-posedness results in the literature. We also derive a continuation criterion for our solutions that is, for the case of very soft potentials, an improvement over the previous state of the art.

MSC:

35Q49 Transport equations
35Q20 Boltzmann equations
35A09 Classical solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
82C40 Kinetic theory of gases in time-dependent statistical mechanics

References:

[1] Alexandre, R.; Liao, J.; Lin, C., Some a priori estimates for the homogeneous Landau equation with soft potentials, Kinet. Relat. Models, 8, 4, 617-650 (2015) · Zbl 1320.35104
[2] Alexandre, R.; Morimoto, Y.; Ukai, S.; Xu, C.-J.; Yang, T., Regularizing effect and local existence for the non-cutoff Boltzmann equation, Arch. Ration. Mech. Anal., 198, 1, 39-123 (2010) · Zbl 1257.76099
[3] Alexandre, R.; Morimoto, Y.; Ukai, S.; Xu, C.-J.; Yang, T., Bounded solutions of the Boltzmann equation in the whole space, Kinet. Relat. Models, 4, 1, 17-40 (2011) · Zbl 1215.35115
[4] Alexandre, R.; Morimoto, Y.; Ukai, S.; Xu, C.-J.; Yang, T., Local existence with mild regularity for the Boltzmann equation, Kinet. Relat. Models, 6, 4, 1011-1041 (2013) · Zbl 1284.35301
[5] Alexandre, R.; Villani, C., On the Landau approximation in plasma physics, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 21, 1, 61-95 (2004) · Zbl 1044.83007
[6] Arsen’ev, A. A.; Peskov, N. V., The existence of a generalized solution of Landau’s equation, Ž. Vyčisl. Mat. Mat. Fiz., 17, 4, 1063-1068 (1977), 1096 · Zbl 0355.35074
[7] Cameron, S.; Silvestre, L.; Snelson, S., Global a priori estimates for the inhomogeneous Landau equation with moderately soft potentials, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 35, 3, 625-642 (2018) · Zbl 1407.35036
[8] Carrapatoso, K.; Mischler, S., Landau equation for very soft and Coulomb potentials near Maxwellians, Ann. PDE, 3, 1, 1 (Jan 2017) · Zbl 1404.35043
[9] Carrapatoso, K.; Tristani, I.; Wu, K.-C., Cauchy problem and exponential stability for the inhomogeneous Landau equation, Arch. Ration. Mech. Anal., 221, 1, 363-418 (2016) · Zbl 1342.35205
[10] Chapman, S.; Cowling, T. G., The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases (1970), Cambridge University Press
[11] Chaturvedi, S., Local existence for the Landau equation with hard potentials (2019), Preprint
[12] Chen, Y.; Desvillettes, L.; He, L., Smoothing effects for classical solutions of the full Landau equation, Arch. Ration. Mech. Anal., 193, 1, 21-55 (2009) · Zbl 1169.76064
[13] Constantin, P.; Tarfulea, A.; Vicol, V., Long time dynamics of forced critical SQG, Commun. Math. Phys., 335, 1, 93-141 (2015) · Zbl 1316.35238
[14] Desvillettes, L., Entropy dissipation estimates for the Landau equation in the Coulomb case and applications, J. Funct. Anal., 269, 5, 1359-1403 (2015) · Zbl 1325.35223
[15] Desvillettes, L.; Villani, C., On the spatially homogeneous Landau equation for hard potentials part I: existence, uniqueness and smoothness, Commun. Partial Differ. Equ., 25, 1-2, 179-259 (2000) · Zbl 0946.35109
[16] Duan, R.; Liu, S.; Sakamoto, S.; Strain, R. M., Global mild solutions of the Landau and non-cutoff Boltzmann equations (2019), Preprint
[17] Golse, F.; Gualdani, M.; Imbert, C.; Vasseur, A., Partial regularity in time for the space homogeneous Landau equation with Coulomb potential (2019), Preprint
[18] Golse, F.; Imbert, C.; Mouhot, C.; Vasseur, A., Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation, Ann. Sc. Norm. Super. Pisa, Cl. Sci., XIX, 1, 253-295 (2019) · Zbl 1431.35016
[19] Gualdani, M.; Guillen, N., Estimates for radial solutions of the homogeneous Landau equation with Coulomb potential, Anal. PDE, 9, 8, 1773-1810 (2016)
[20] Gualdani, M.; Guillen, N., On \(A_p\) weights and the Landau equation, Calc. Var. Partial Differ. Equ., 58, 1, 17 (2018) · Zbl 1404.35078
[21] Guo, Y., The Landau equation in a periodic box, Commun. Math. Phys., 231, 3, 391-434 (2002) · Zbl 1042.76053
[22] He, L.; Yang, X., Well-posedness and asymptotics of grazing collisions limit of Boltzmann equation with Coulomb interaction, SIAM J. Math. Anal., 46, 6, 4104-4165 (2014) · Zbl 1315.35140
[23] Henderson, C.; Snelson, S., \( C^\infty\) smoothing for weak solutions of the inhomogeneous Landau equation, Arch. Ration. Mech. Anal., 236, 1, 113-143 (2020) · Zbl 1435.35101
[24] Henderson, C.; Snelson, S.; Tarfulea, A., Local existence, lower mass bounds, and a new continuation criterion for the Landau equation, J. Differ. Equ., 266, 2-3, 1536-1577 (2019) · Zbl 1406.35401
[25] Imbert, C.; Mouhot, C.; Silvestre, L., Decay estimates for large velocities in the Boltzmann equation without cut-off, J. Éc. Polytech., 7, 143-184 (2020) · Zbl 1427.35278
[26] Imbert, C.; Silvestre, L., The Schauder estimate for kinetic integral equations (2018), Preprint
[27] Imbert, C.; Silvestre, L., Global regularity estimates for the Boltzmann equation without cut-off (2019), Preprint
[28] Imbert, C.; Silvestre, L., Weak Harnack inequality for the Boltzmann equation without cut-off, J. Eur. Math. Soc., 2, 2, 507-592 (2020) · Zbl 1473.35077
[29] Kiselev, A.; Nazarov, F.; Shterenberg, R., Blow up and regularity for fractal Burgers equation, Dyn. Partial Differ. Equ., 5, 3, 211-240 (2008) · Zbl 1186.35020
[30] Lifshitz, E. M.; Pitaevskii, L. P., Physical Kinetics, Course of Theoretical Physics, vol. 10 (1981), Butterworth-Heinemann
[31] Lions, P.-L., On Boltzmann and Landau equations, Philos. Trans. R. Soc. Lond., Ser. A, 346, 1679, 191-204 (1994) · Zbl 0809.35137
[32] Luk, J., Stability of vacuum for the Landau equation with moderately soft potentials, Ann. PDE, 5, 1, 11 (2019) · Zbl 1423.35069
[33] Morimoto, Y.; Yang, T., Local existence of polynomial decay solutions to the Boltzmann equation for soft potentials, Anal. Appl. (Singap.), 13, 6, 663-683 (2015) · Zbl 1326.35225
[34] Mouhot, C., De Giorgi-Nash-Moser and Hörmander theories: new interplay, (Proc. ICM 2018, Vol. III (2020)), 2467-2493 · Zbl 1447.35008
[35] Mouhot, C.; Neumann, L., Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, 19, 4, 969 (2006) · Zbl 1169.82306
[36] Pascucci, A.; Polidoro, S., The Moser’s iterative method for a class of ultraparabolic equations, Commun. Contemp. Math., 06, 03, 395-417 (2004) · Zbl 1096.35080
[37] Silvestre, L., A new regularization mechanism for the Boltzmann equation without cut-off, Commun. Math. Phys., 348, 1, 69-100 (2016) · Zbl 1352.35091
[38] Silvestre, L., Upper bounds for parabolic equations and the Landau equation, J. Differ. Equ., 262, 3, 3034-3055 (2017) · Zbl 1357.35066
[39] Snelson, S., Gaussian bounds for the inhomogeneous Landau equation with hard potentials, SIAM J. Math. Anal., 52, 2, 2081-2097 (2020) · Zbl 1439.35103
[40] Strain, R. M.; Guo, Y., Almost exponential decay near Maxwellian, Commun. Partial Differ. Equ., 31, 3, 417-429 (2006) · Zbl 1096.82010
[41] Strain, R. M.; Guo, Y., Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal., 187, 2, 287-339 (2008) · Zbl 1130.76069
[42] Villani, C., On the Cauchy problem for Landau equation: sequential stability, global existence, Adv. Differ. Equ., 1, 5, 793-816 (1996) · Zbl 0856.35020
[43] Villani, C., On the spatially homogeneous Landau equation for Maxwellian molecules, Math. Models Methods Appl. Sci., 08, 06, 957-983 (1998) · Zbl 0957.82029
[44] Wang, W.; Zhang, L., The \(C^\alpha\) regularity of weak solutions of ultraparabolic equations, Discrete Contin. Dyn. Syst., 29, 3, 1261-1275 (2011) · Zbl 1209.35072
[45] Wu, K.-C., Global in time estimates for the spatially homogeneous Landau equation with soft potentials, J. Funct. Anal., 266, 5, 3134-3155 (2014) · Zbl 1296.35112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.