×

Freak chimera states in a locally coupled Duffing oscillators chain. (English) Zbl 1455.34031

This paper considers a chain of periodically forced Duffing oscillators, diffusively coupled to their two nearest neighbours. Parameters are set so that an uncoupled oscillator is in a bistable state. There may exist states for which a group of oscillators are near one of the uncoupled attractors, behaving approximately periodically, while the rest are near the other uncoupled attractor, which has more complex behaviour. Such a state is referred to as a “chimera”. If one group is near an attractor and behaving in a complex way, and the other group is near the other attractor, also behaving in a complex way, this is referred to as a “freak chimera”. Transitions from a chimera to a freak chimera are numerically investigated as the amplitude of forcing and strength of coupling are varied.

MSC:

34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34D05 Asymptotic properties of solutions to ordinary differential equations
37C60 Nonautonomous smooth dynamical systems
34D45 Attractors of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Pikovsky, A.; Rosenblum, M.; Kurths, J., Synchronization: a universal concept in nonlinear science (2001), Cambridge University Press: Cambridge University Press Cambridge, England · Zbl 0993.37002
[2] Abrams, D. M.; Strogatz, S. H., Chimera states for coupled oscillators, Phys Rev Lett, 93, 17, 174102 (2004)
[3] Kaneko, K., Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements, Physica D, 41, 2, 137-172 (1990) · Zbl 0709.58520
[4] Kuramoto, Y.; Battogtokh, D., Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlin Phenom Complex Syst, 5, 380-385 (2002)
[5] Sethia, G. C.; Sen, A.; Johnston, G. L., Amplitude-mediated chimera states, Phys Rev E, 88, 4, 042917 (2013)
[6] Omel’chenko, O. E., Coherence-incoherence patterns in a ring of non-locally coupled phase oscillators, Nonlinearity, 26, 9, 2469-2498 (2013) · Zbl 1281.34051
[7] Smirnov, L.; Osipov, G.; Pikovsky, A., Chimera patterns in the Kuramoto-Battogtokh model, J Phys A, 50, 8, 08LT01 (2017) · Zbl 1393.45007
[8] Dudkowski, D.; Maistrenko, Y.; Kapitaniak, T., Different types of chimera states: an interplay between spatial and dynamical chaos, Phys Rev E, 90, 3, 032920 (2014)
[9] Gopal, R.; Chandrasekar, V. K.; Venkatesan, A.; Lakshmanan, M., Observation and characterization of chimera states in coupled dynamical systems with nonlocal coupling, Phys Rev E, 89, 5, 052914 (2014)
[10] Schöll, E., Synchronization patterns and chimera states in complex networks: interplay of topology and dynamics, Eur Phys J Spec Top, 225, 891-919 (2016)
[11] Omel’chenko, O. E.; Maistrenko, Y. L.; Tass, P. A., Chimera states: the natural link between coherence and incoherence, Phys Rev Lett, 100, 4, 044105 (2008)
[12] Hens, C. R.; Mishra, A.; Roy, P. K.; Sen, A.; Dana, S. K., Chimera states in a population of identical oscillators under planar cross-coupling, Pramana, 84, 229-235 (2015)
[13] Dudkowski, D.; Maistrenko, Y.; Kapitaniak, T., Occurrence and stability of chimera states in coupled externally excited oscillators, Chaos, 26, 116306 (2016)
[14] Omelchenko, I.; Omel’chenko, O. E.; Zakharova, A.; Wolfrum, M.; Schöll, E., Tweezers for chimeras in small networks, Phys Rev Lett, 116, :114101 (2016)
[15] Tumash, L.; Zakharova, A.; Lehnert, J.; Just, W.; Schöll, E., Stability of amplitude chimeras in oscillator networks, EPL, 117, 20001 (2017)
[16] Omelchenko, I.; Maistrenko, Y.; Hövel, P.; Schöll, E., Loss of coherence in dynamical networks: spatial chaos and chimera states, Phys Rev Lett, 106, 234102 (2011)
[17] Omelchenko, I.; Riemenschneider, B.; Hövel, P.; Maistrenko, Y.; Schöll, E., Transition from spatial coherence to incoherence in coupled chaotic systems, Phys Rev E, 85, 026212 (2012)
[18] Bogomolov, S. A.; Slepne, A. V.; Strelkova, G. I.; Schöll, E.; Anishchenko, V. S., Mechanisms of appearance of amplitude and phase chimera states in ensembles of nonlocally coupled chaotic systems, Commun Nonlin Sci Numer Simul, 43, 25-36 (2017) · Zbl 1471.37040
[19] Ujjwal, S. R.; Punetha, N.; Prasad, A.; Ramaswamy, R., Emergence of chimeras through induced multistability, Phys Rev E, 95, 032203 (2017)
[20] Bastidas, V. M.; Omelchenko, I.; Zakharova, A.; Schöll, E.; Brandes, T., Quantum signatures of chimera states, Phys Rev E, 92, 6, 062924 (2015)
[21] 10.1109/ICARCV.2014.7064312
[22] Santos, M.; Szezech, J.; Borges, F.; Iarosz, K.; Caldas, I.; Batista, A., Chimera-like states in a neuronal network model of the cat brain, Chaos Solitons Fract, 101, 86-91 (2017)
[23] Larger, L.; Penkovsky, B.; Maistrenko, Y., Virtual chimera states for delayed-feedback systems, Phys Rev Lett, 111, 054103 (2013)
[24] Bera, B. K.; Ghosh, D., Chimera states in purely local delay-coupled oscillators, Phys Rev E, 93, 052223 (2016)
[25] Hizanidis, J.; Lazarides, N.; Tsironis, G. P., Robust chimera states in SQUID metamaterials with local interactions, Phys Rev E, 94, 3, 032219 (2016)
[26] Tinsley, M. R.; Nkomo, S.; Showalter, K., Chimera and phase-cluster states in populations of coupled chemical oscillators, Nat Phys, 8, 662-665 (2012)
[27] Wickramasinghe, M.; Kiss, I. Z., Spatially organized dynamical states in chemical oscillator networks: synchronization, dynamical differentiation, and chimera patterns, PLoS ONE, 8, 11, e80586 (2013)
[28] Hart, J. D.; Bansal, K.; Murphy, T. E.; Roy, R., Experimental observation of chimera and cluster states in a minimal globally coupled network, Chaos, 26, 094801 (2016)
[29] Hagerstrom, A. M.; Murphy, T. E.; Roy, R.; Hövel, P.; Omelchenko, I.; Schöll, E., Experimental observation of chimeras in coupled-map lattices, Nat Phys, 8, 658-661 (2012)
[30] Martens, E. A.; Thutupalli, S.; Fourriére, A.; Hallatschek, O., Chimera states in mechanical oscillator networks, Proc Natl Acad Sci USA, 110, 10563-10567 (2013)
[31] Kapitaniak, T.; Kuzma, P.; Wojewoda, J.; Czolczynski, K.; Maistrenko, Y., Imperfect chimera states for coupled pendula, Sci Rep, 4, 6379 (2014)
[32] Rosin, D. P.; Rontani, D.; Haynes, N. D.; Schöll, E.; Gauthier, D. J., Transient scaling and resurgence of chimera states in networks of boolean phase oscillators, Phys Rev E, 90, 3, 030902 (2014)
[33] Gambuzza, L. V.; Buscarino, A.; Chessari, S.; Fortuna, L.; Meucci, R.; Frasca, M., Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators, Phys Rev E, 90, 032905 (2014)
[34] Larger, L.; Penkovsky, B.; Maistrenko, Y., Laser chimeras as a paradigm for multistable patterns in complex systems, Nat Comm, 6, 7752 (2015)
[35] Uy, C. H.; Weicker, L.; Rontani, D.; Sciamanna, M., Optical chimera in light polarization, APL Photon, 4, 056104 (2019)
[36] Clerc, M. G.; Coulibaly, S.; Ferré, M. A.; Rojas, R. G., Chimera states in a duffing oscillators chain coupled to nearest neighbors, Chaos, 28, 083126 (2018) · Zbl 1396.34027
[37] Clerc, M. G.; Coulibaly, S.; Ferré, M. A.; García-Ñustes, M. A.; Rojas, R. G., Chimera-type states induced by local coupling, Phys Rev E, 93, 052204 (2016)
[38] Clerc, M. G.; Ferré, M. A.; Coulibaly, S.; Rojas, R. G.; Tlidi, M., Chimera-like states in an array of coupled-waveguide resonators, Opt Lett, 42, 2906-2909 (2017)
[39] Peierls, R. F., The size of a dislocation, Proc Phys Soc, 52, 34 (1940)
[40] Nabarro, F. R.N., Dislocations in a simple cubic lattice, Proc Phys Soc, 59, 256 (1947)
[41] Clerc, M. G.; Elías, R. G.; Rojas, R. G., Continuous description of lattice discreteness effects in front propagation, Phil Trans R Soc A, 369, 412-424 (2011) · Zbl 1211.82034
[42] Kovacic, I.; Brennan, M. J., The Duffing equation: nonlinear oscillators and their behaviour (2011), John Wiley and Sons · Zbl 1220.34002
[43] Ott, E., Chaos in dynamical systems (2002), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 1006.37001
[44] Pikovsky, A.; Politi, A., Lyapunov exponents: a tool to explore complex dynamics (2016), Cambridge University Press · Zbl 1419.37002
[45] Vol. 790;. p. 63-135
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.