×

A new approach to modelling centralised reputation systems. (English) Zbl 1454.94071

Buchmann, Johannes (ed.) et al., Progress in cryptology – AFRICACRYPT 2019. 11th international conference on cryptology in Africa, Rabat, Morocco, July 9–11, 2019. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 11627, 429-447 (2019).
Summary: A reputation system assigns a user or item a reputation value which can be used to evaluate trustworthiness. J. Blömer et al. [CT-RSA 2018, Lect. Notes Comput. Sci. 10808, 470-490 (2018; Zbl 1507.94029)], and A. E. Kaafarani, S. Katsumata and R. Solomon in [“Anonymous reputation systems achieving full dynamicity from lattices.” In: Twenty-Second International Conference on Financial Cryptography and Data Security, FC 2018, Lect. Notes Comput. Sci. 10957, 388–406 (2018; doi:10.1007/978-3-662-58387-6_21)], gave formal models for centralised reputation systems, which rely on a central server and are widely used by service providers such as AirBnB, Uber and Amazon. In these models, reputation values are given to items, instead of users. We advocate a need for shift in how reputation systems are modelled, whereby reputation values are given to users, instead of items, and each user has unlinkable items that other users can give feedback on, contributing to their reputation value. This setting is not captured by the previous models, and we argue it captures more realistically the functionality and security requirements of a reputation system. We provide definitions for this new model, and give a construction from standard primitives, proving it satisfies these security requirements. We show that there is a low efficiency cost for this new functionality.
For the entire collection see [Zbl 1428.94007].

MSC:

94A60 Cryptography

Citations:

Zbl 1507.94029
Full Text: DOI

References:

[1] Amazon’s third-party sellers ship record-breaking 2 billion items in 2014, but merchant numbers stay flat. https://techcrunch.com/2015/01/05/amazon-third-party-sellers-2014/. Accessed 1 Apr 2019
[2] Travis kalanick says uber has 40 million monthly active riders. https://techcrunch.com/2016/10/19/travis-kalanick-says-uber-has-40-million-monthly-active-riders/. Accessed 1 Apr 2019
[3] Androulaki, E.; Choi, SG; Bellovin, SM; Malkin, T.; Borisov, N.; Goldberg, I., Reputation systems for anonymous networks, Privacy Enhancing Technologies, 202-218, 2008, Heidelberg: Springer, Heidelberg · doi:10.1007/978-3-540-70630-4_13
[4] Bellare, M.; Micciancio, D.; Warinschi, B.; Biham, E., Foundations of group signatures: formal definitions, simplified requirements, and a construction based on general assumptions, Advances in Cryptology — EUROCRYPT 2003, 614-629, 2003, Heidelberg: Springer, Heidelberg · Zbl 1038.94552 · doi:10.1007/3-540-39200-9_38
[5] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 93, 3-5 November 1993, pp. 62-73. ACM Press, Fairfax (1993)
[6] Bellare, M.; Shi, H.; Zhang, C.; Menezes, A., Foundations of group signatures: the case of dynamic groups, Topics in Cryptology - CT-RSA 2005, 136-153, 2005, Heidelberg: Springer, Heidelberg · Zbl 1079.94013 · doi:10.1007/978-3-540-30574-3_11
[7] Bethencourt, J.; Shi, E.; Song, D.; Sion, R., Signatures of reputation, Financial Cryptography and Data Security, 400-407, 2010, Heidelberg: Springer, Heidelberg · Zbl 1309.94136 · doi:10.1007/978-3-642-14577-3_35
[8] Blömer, J.; Juhnke, J.; Kolb, C.; Böhme, R.; Okamoto, T., Anonymous and publicly linkable reputation systems, Financial Cryptography and Data Security, 478-488, 2015, Heidelberg: Springer, Heidelberg · doi:10.1007/978-3-662-47854-7_29
[9] Boneh, D.; Boyen, X.; Cachin, C.; Camenisch, JL, Short signatures without random oracles, Advances in Cryptology - EUROCRYPT 2004, 56-73, 2004, Heidelberg: Springer, Heidelberg · Zbl 1122.94354 · doi:10.1007/978-3-540-24676-3_4
[10] Boneh, D.; Boyen, X., Short signatures without random oracles and the SDH assumption in bilinear groups, J. Cryptol., 21, 2, 149-177, 2008 · Zbl 1140.94373 · doi:10.1007/s00145-007-9005-7
[11] Bootle, J.; Cerulli, A.; Chaidos, P.; Ghadafi, E.; Groth, J.; Manulis, M.; Sadeghi, A-R; Schneider, S., Foundations of fully dynamic group signatures, Applied Cryptography and Network Security, 117-136, 2016, Cham: Springer, Cham · Zbl 1346.94141 · doi:10.1007/978-3-319-39555-5_7
[12] Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Atluri, V., Pfitzmann, B., McDaniel, P. (eds.) ACM CCS 2004, 25-29 October 2004, pp. 132-145. ACM Press, Washington (2004)
[13] Camenisch, J., Chen, L., Drijvers, M., Lehmann, A., Novick, D., Urian, R.: One TPM to bind them all: fixing TPM 2.0 for provably secure anonymous attestation. In: 2017 IEEE Symposium on Security and Privacy, SP, pp. 901-920. IEEE (2017)
[14] Camenisch, J.; Drijvers, M.; Lehmann, A.; Franz, M.; Papadimitratos, P., Anonymous attestation using the strong Diffie Hellman assumption revisited, Trust and Trustworthy Computing, 1-20, 2016, Cham: Springer, Cham · doi:10.1007/978-3-319-45572-3_1
[15] Camenisch, J.; Drijvers, M.; Lehmann, A.; Cheng, C-M; Chung, K-M; Persiano, G.; Yang, B-Y, Universally composable direct anonymous attestation, Public-Key Cryptography - PKC 2016, 234-264, 2016, Heidelberg: Springer, Heidelberg · Zbl 1395.94270 · doi:10.1007/978-3-662-49387-8_10
[16] Chaum, D.; van Heyst, E.; Davies, DW, Group signatures, Advances in Cryptology — EUROCRYPT 1991, 257-265, 1991, Heidelberg: Springer, Heidelberg · Zbl 0791.68044 · doi:10.1007/3-540-46416-6_22
[17] Delerablée, C.; Pointcheval, D.; Nguyen, PQ, Dynamic fully anonymous short group signatures, Progress in Cryptology - VIETCRYPT 2006, 193-210, 2006, Heidelberg: Springer, Heidelberg · Zbl 1295.94177 · doi:10.1007/11958239_13
[18] Kaafarani, A.E., Katsumata, S., Solomon, R.: Anonymous reputation systems achieving full dynamicity from lattices. In: Twenty-Second International Conference on Financial Cryptography and Data Security (forthcoming)
[19] Garms, L., Martin, K., Ng, S.-L.: Reputation schemes for pervasive social networks with anonymity. In: Proceedings of the fifteenth International Conference on Privacy, Security and Trust (PST 2017), IEEE (2017)
[20] Garms, L., Quaglia, E.A.: A new approach to modelling centralised reputation systems. Cryptology ePrint Archive, Report 2019/453 (2019). https://eprint.iacr.org/2019/453
[21] Ling, S.; Nguyen, K.; Wang, H.; Xu, Y.; Gollmann, D.; Miyaji, A.; Kikuchi, H., Lattice-based group signatures: achieving full dynamicity with ease, Applied Cryptography and Network Security, 293-312, 2017, Cham: Springer, Cham · Zbl 1522.94070 · doi:10.1007/978-3-319-61204-1_15
[22] Lysyanskaya, A.; Rivest, RL; Sahai, A.; Wolf, S.; Heys, H.; Adams, C., Pseudonym systems, Selected Areas in Cryptography, 184-199, 2000, Heidelberg: Springer, Heidelberg · doi:10.1007/3-540-46513-8_14
[23] Mármol, FG; Pérez, GM, Security threats scenarios in trust and reputation models for distributed systems, Comput. Secur., 28, 7, 545-556, 2009 · doi:10.1016/j.cose.2009.05.005
[24] Ng, S-L; Martin, K.; Chen, L.; Li, Q., Private reputation retrieval in public - a privacy-aware announcement scheme for vanets, IET Inf. Secur., 2016 · doi:10.1049/iet-ifs.2014.0316
[25] Pavlov, E.; Rosenschein, JS; Topol, Z.; Jensen, C.; Poslad, S.; Dimitrakos, T., Supporting privacy in decentralized additive reputation systems, Trust Management, 108-119, 2004, Heidelberg: Springer, Heidelberg · Zbl 1126.68663 · doi:10.1007/978-3-540-24747-0_9
[26] Petrlic, R., Lutters, S., Sorge, C.: Privacy-preserving reputation management. In: Proceedings of the 29th Annual ACM Symposium on Applied Computing, SAC 2014, pp. 1712-1718. ACM, New York (2014)
[27] Scott, M.: Pairing implementation revisited. Cryptology ePrint Archive, Report 2019/077 (2019). https://eprint.iacr.org/2019/077
[28] Zhai, E., Wolinsky, D.I., Chen, R., Syta, E., Teng, C., Ford, B.: AnonRep: towards tracking-resistant anonymous reputation. In: 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2016), pp. 583-596. USENIX Association (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.