×

Quivers for 3-manifolds: the correspondence, BPS states, and 3d \(\mathcal{N} = 2\) theories. (English) Zbl 1454.83139

Summary: We introduce and explore the relation between quivers and 3-manifolds with the topology of the knot complement. This idea can be viewed as an adaptation of the knots-quivers correspondence to Gukov-Manolescu invariants of knot complements (also known as \(F_K\) or \(\hat{Z} )\). Apart from assigning quivers to complements of \(T^{(2,2p+1)}\) torus knots, we study the physical interpretation in terms of the BPS spectrum and general structure of 3d \(\mathcal{N} = 2\) theories associated to both sides of the correspondence. We also make a step towards categorification by proposing a \(t\)-deformation of all objects mentioned above.

MSC:

83E30 String and superstring theories in gravitational theory
58J28 Eta-invariants, Chern-Simons invariants
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory

References:

[1] P. Kucharski, M. Reineke, M. Stošić and P. Sułkowski, BPS states, knots and quivers, Phys. Rev. D96 (2017) 121902 [arXiv:1707.02991] [INSPIRE].
[2] P. Kucharski, M. Reineke, M. Stošić and P. Sułkowski, Knots-quivers correspondence, Adv. Theor. Math. Phys.23 (2019) 1849 [arXiv:1707.04017] [INSPIRE]. · Zbl 1521.57006
[3] S. Gukov and C. Manolescu, A two-variable series for knot complements, arXiv:1904.06057 [INSPIRE].
[4] Ooguri, H.; Vafa, C., Knot invariants and topological strings, Nucl. Phys. B, 577, 419 (2000) · Zbl 1036.81515 · doi:10.1016/S0550-3213(00)00118-8
[5] J.M.F. Labastida and M. Mariño, Polynomial invariants for torus knots and topological strings, Commun. Math. Phys.217 (2001) 423 [hep-th/0004196] [INSPIRE]. · Zbl 1018.81049
[6] J.M.F. Labastida, M. Mariño and C. Vafa, Knots, links and branes at large N, JHEP11 (2000) 007 [hep-th/0010102] [INSPIRE]. · Zbl 0990.81545
[7] M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435 [INSPIRE]. · Zbl 1248.14060
[8] M. Kontsevich and Y. Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Num. Theor. Phys.5 (2011) 231 [arXiv:1006.2706] [INSPIRE]. · Zbl 1248.14060
[9] Efimov, AI, Cohomological Hall algebra of a symmetric quiver, Compos. Math., 148, 1133 (2012) · Zbl 1273.14113 · doi:10.1112/S0010437X12000152
[10] M. Stošić and P. Wedrich, Rational links and DT invariants of quivers, arXiv:1711.03333 [INSPIRE].
[11] M. Stošić and P. Wedrich, Tangle addition and the knots-quivers correspondence, arXiv:2004.10837 [INSPIRE].
[12] T. Ekholm, P. Kucharski and P. Longhi, Physics and geometry of knots-quivers correspondence, arXiv:1811.03110 [INSPIRE]. · Zbl 1435.81171
[13] Ekholm, T.; Kucharski, P.; Longhi, P., Multi-cover skeins, quivers, and 3d \(\mathcal{N} = 2\) dualities, JHEP, 02, 018 (2020) · Zbl 1435.81171 · doi:10.1007/JHEP02(2020)018
[14] H. Awata, S. Gukov, P. Sułkowski and H. Fuji, Volume Conjecture: Refined and Categorified, Adv. Theor. Math. Phys.16 (2012) 1669 [arXiv:1203.2182] [INSPIRE]. · Zbl 1282.57016
[15] M. Aganagic and C. Vafa, Large N Duality, Mirror Symmetry, and a Q-deformed A-polynomial for Knots, arXiv:1204.4709 [INSPIRE].
[16] H. Fuji, S. Gukov and P. Sułkowski, Super-A-polynomial for knots and BPS states, Nucl. Phys. B867 (2013) 506 [arXiv:1205.1515] [INSPIRE]. · Zbl 1262.81170
[17] S. Garoufalidis, A.D. Lauda and T.T.Q. Lê, The colored HOMFLYPT function is q-holonomic, Duke Math. J.167 (2018) 397 [arXiv:1604.08502] [INSPIRE]. · Zbl 1414.57012
[18] H. Fuji, S. Gukov, M. Stošić and P. Sułkowski, 3d analogs of Argyres-Douglas theories and knot homologies, JHEP01 (2013) 175 [arXiv:1209.1416] [INSPIRE].
[19] M. Panfil, M. Stošić and P. Sułkowski, Donaldson-Thomas invariants, torus knots, and lattice paths, Phys. Rev. D98 (2018) 026022 [arXiv:1802.04573] [INSPIRE].
[20] Panfil, M.; Sułkowski, P., Topological strings, strips and quivers, JHEP, 01, 124 (2019) · Zbl 1409.83193 · doi:10.1007/JHEP01(2019)124
[21] Larraguivel, H.; Noshchenko, D.; Panfil, M.; Sułkowski, P., Nahm sums, quiver A-polynomials and topological recursion, JHEP, 07, 151 (2020) · Zbl 1451.83099 · doi:10.1007/JHEP07(2020)151
[22] Gukov, S.; Putrov, P.; Vafa, C., Fivebranes and 3-manifold homology, JHEP, 07, 071 (2017) · Zbl 1380.58018 · doi:10.1007/JHEP07(2017)071
[23] S. Gukov, D. Pei, P. Putrov and C. Vafa, BPS spectra and 3-manifold invariants, J. Knot Theor. Ramifications29 (2020) 2040003 [arXiv:1701.06567] [INSPIRE]. · Zbl 1448.57020
[24] S. Gukov, M. Mariño and P. Putrov, Resurgence in complex Chern-Simons theory, arXiv:1605.07615 [INSPIRE].
[25] Cheng, MCN; Chun, S.; Ferrari, F.; Gukov, S.; Harrison, SM, 3d Modularity, JHEP, 10, 010 (2019) · Zbl 1427.81118 · doi:10.1007/JHEP10(2019)010
[26] Kucharski, P., \( \hat{Z}\) invariants at rational τ, JHEP, 09, 092 (2019) · Zbl 1423.81171 · doi:10.1007/JHEP09(2019)092
[27] H.-J. Chung, BPS Invariants for 3-Manifolds at Rational Level K , arXiv:1906.12344 [INSPIRE].
[28] T. Dimofte, D. Gaiotto and S. Gukov, Gauge Theories Labelled by Three-Manifolds, Commun. Math. Phys.325 (2014) 367 [arXiv:1108.4389] [INSPIRE]. · Zbl 1292.57012
[29] S. Cecotti, C. Cordova and C. Vafa, Braids, Walls, and Mirrors, arXiv:1110.2115 [INSPIRE].
[30] T. Dimofte, D. Gaiotto and S. Gukov, 3-Manifolds and 3d Indices, Adv. Theor. Math. Phys.17 (2013) 975 [arXiv:1112.5179] [INSPIRE]. · Zbl 1297.81149
[31] Gadde, A.; Gukov, S.; Putrov, P., Walls, Lines, and Spectral Dualities in 3d Gauge Theories, JHEP, 05, 047 (2014) · doi:10.1007/JHEP05(2014)047
[32] S. Chun, S. Gukov, S. Park and N. Sopenko, 3d-3d correspondence for mapping tori, arXiv:1911.08456 [INSPIRE].
[33] H.-J. Chung, Index for a Model of 3d-3d Correspondence for Plumbed 3-Manifolds, arXiv:1912.13486 [INSPIRE].
[34] K. Bringmann, K. Mahlburg and A. Milas, Quantum modular forms and plumbing graphs of 3-manifolds, arXiv:1810.05612 [INSPIRE]. · Zbl 1444.11112
[35] K. Bringmann, K. Mahlburg and A. Milas, Higher depth quantum modular forms and plumbed 3-manifolds, arXiv:1906.10722. · Zbl 1444.11112
[36] M.C.N. Cheng, F. Ferrari and G. Sgroi, Three-Manifold Quantum Invariants and Mock Theta Functions, Phil. Trans. Roy. Soc. Lond.378 (2019) 20180439 [arXiv:1912.07997] [INSPIRE]. · Zbl 1462.11037
[37] Melvin, P.; Morton, H., The coloured Jones function, Commun. Math. Phys., 169, 501 (1995) · Zbl 0845.57007 · doi:10.1007/BF02099310
[38] Bar-Natan, D.; Garoufalidis, S., On the Melvin-Morton-Rozansky conjecture, Invent. Math., 125, 103 (1996) · Zbl 0855.57004 · doi:10.1007/s002220050070
[39] L. Rozansky, A Contribution to the trivial connection to Jones polynomial and Witten’s invariant of 3-D manifolds. 1., Commun. Math. Phys.175 (1996) 275 [hep-th/9401061] [INSPIRE]. · Zbl 0872.57010
[40] L. Rozansky, The universal R-matrix, Burau representation, and the Melvin-Morton expansion of the colored Jones polynomial, Adv. Math.134 (1998) 1. · Zbl 0949.57006
[41] S. Garoufalidis, On the characteristic and deformation varieties of a knot, Geom. Topol. Monographs7 (2004) 291 [math/0306230]. · Zbl 1080.57014
[42] Gukov, S., Three-dimensional quantum gravity, Chern-Simons theory, and the A polynomial, Commun. Math. Phys., 255, 577 (2005) · Zbl 1115.57009 · doi:10.1007/s00220-005-1312-y
[43] T. Ekholm, A. Gruen, S. Gukov, P. Kucharski, S. Park and P. Sułkowski, \( \hat{Z}\) at large N: from curve counts to quantum modularity, arXiv:2005.13349 [INSPIRE].
[44] L. Diogo and T. Ekholm, Augmentations, annuli, and Alexander polynomials, arXiv:2005.09733 [INSPIRE].
[45] Park, S., Higher rank \(\hat{Z}\) and F_K, SIGMA, 16, 044 (2020) · Zbl 1460.57013
[46] S. Park, Large color R-matrix for knot complements and strange identities, arXiv:2004.02087 [INSPIRE].
[47] S. Gukov, P.-S. Hsin, H. Nakajima, S. Park, D. Pei and N. Sopenko, Rozansky-Witten geometry of Coulomb branches and logarithmic knot invariants, arXiv:2005.05347 [INSPIRE].
[48] N.M. Dunfield, S. Gukov and J. Rasmussen, The Superpolynomial for knot homologies, math/0505662 [INSPIRE]. · Zbl 1118.57012
[49] Freyd, P.; Yetter, D.; Hoste, J.; Lickorish, WBR; Millett, K.; Ocneanu, A., A new polynomial invariant of knots and links, Bull. Am. Math. Soc., 12, 239 (1985) · Zbl 0572.57002 · doi:10.1090/S0273-0979-1985-15361-3
[50] Przytycki, J.; Traczyk, P., Invariants of links of Conway type, Kobe J. Math., 4, 115 (1987) · Zbl 0655.57002
[51] Witten, E., Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys., 121, 351 (1989) · Zbl 0667.57005 · doi:10.1007/BF01217730
[52] S. Garoufalidis, P. Kucharski and P. Sułkowski, Knots, BPS states, and algebraic curves, Commun. Math. Phys.346 (2016) 75 [arXiv:1504.06327] [INSPIRE]. · Zbl 1365.57015
[53] P. Kucharski and P. Sułkowski, BPS counting for knots and combinatorics on words, JHEP11 (2016) 120 [arXiv:1608.06600] [INSPIRE]. · Zbl 1390.81448
[54] S. Meinhardt and M. Reineke, Donaldson-Thomas invariants versus intersection cohomology of quiver moduli, arXiv:1411.4062. · Zbl 1439.14160
[55] Franzen, H.; Reineke, M., Semi-stable Chow-Hall algebras of quivers and quantized Donaldson-Thomas invariants, Alg. Numb. Theor., 12, 1001 (2018) · Zbl 1423.14314 · doi:10.2140/ant.2018.12.1001
[56] T. Dimofte, S. Gukov and L. Hollands, Vortex Counting and Lagrangian 3-manifolds, Lett.Math. Phys.98 (2011) 225 [arXiv:1006.0977] [INSPIRE]. · Zbl 1239.81057
[57] Y. Terashima and M. Yamazaki, Semiclassical Analysis of the 3d/3d Relation, Phys. Rev. D88 (2013) 026011 [arXiv:1106.3066] [INSPIRE].
[58] Gopakumar, R.; Vafa, C., On the gauge theory/geometry correspondence, AMS/IP Stud. Adv. Math., 23, 45 (2001) · Zbl 1026.81029 · doi:10.1090/amsip/023/03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.