×

On the spherical indicatrices of curves in Galilean 4-space. (English) Zbl 1454.53014

Summary: Euclidean and non-Euclidean geometries can be considered as spaces that are invariant under a given group of transformations [F. Klein, Math. Ann. 43, 63–100 (1893; JFM 25.0871.01)]. The geometry established by this approach is called Cayley-Klein geometry. Galilean 4-space is simply defined as a Cayley-Klein geometry of the product space \(\mathbb{R}\times\mathbb{E}^3\) whose symmetry group is Galilean transformation group which has an important place in classical and modern physics.

MSC:

53A35 Non-Euclidean differential geometry
53A40 Other special differential geometries
53B25 Local submanifolds

Citations:

JFM 25.0871.01
Full Text: DOI

References:

[1] Akyi˘git M, Azak AZ, Ersoy S. Involute-evolute curves in Galilean spaceG3. Scie Magna 2010; 6(4): 75-80.
[2] Aydın ME, Erg¨ut M. The equiform differential geometry of curves in 4-dimensional galilean spaceG4. Stud Univ Babe¸s-Bolyai Math 2013; 58(3): 393-400. · Zbl 1299.53021
[3] Bekta¸s M, Erg¨ut M, ¨O˘grenmi¸s AO. Special curves of 4D Galilean space. Int Jour Math Engin Scie 2013; 2(3): 1-8.
[4] Divjak B. Curves in pseudo Galilean geometry. Annal Univ Budapest 1998; 41: 117-128. · Zbl 0932.53005
[5] Divjak B, Milin Sipus Z. Special curves on ruled surfaces in Galilean and pseudo Galilean spaces. Acta Math Hungar 2003; 98: 203-215. · Zbl 1026.53004
[6] Erg¨ut M, ¨O˘grenmi¸s AO. Some characterizations of spherical curves in Galilean space. Jour Adv Res Pure Math 2009; 1: 18-26.
[7] Klein F. Vergleichende betrachtungen ¨uber neuere geometrische forschungen. Math Ann 1893; 43: 63-100. · JFM 25.0871.01
[8] K¨orpınar T, Turhan E, Asil V. Tangent Bishop spherical images of a biharmonic B-slant helix in the Heisenberg group Heis3. Iran J Sci Technol Trans Sci 2012; 35: 265-271.
[9] K¨orpınar T, Turhan E. Time evolution equations for surfaces generated via binormal spherical image in terms of inextensible flows. Journal of Dynamical Systems and Geometric Theories 2014; 12(2): 145-157. · Zbl 1499.31014
[10] K¨orpınar T. New inextensible flows of principal normal spherical image. Asian-European J Math 2018; 11(1), 1850001. · Zbl 1393.35173
[11] Monterde J. Curves with constant curvature ratios. Bol Soc Mat Mex 2007; 13(1): 177-186. · Zbl 1177.53015
[12] ¨O˘grenmi¸s AO, Erg¨ut M, Bekta¸s M. On the helices in the Galilean spaceG3. Iran Jour Sci Tech Transac A Scie 2007; 31(2): 177-181. · Zbl 1244.53012
[13] ¨O˘grenmi¸s AO, Erg¨ut M. On the explicit characterization of admissible curve in 3-dimensional pseudo-Galilean space. Jour Adv Math Stud 2009; 2: 63-72. · Zbl 1178.53024
[14] ¨Oztekin H. Special Bertrand curves in 4D Galilean space. Math Prob Eng 2014; 2014:7 pages. http://dx.doi.org/10.1155/2014/318458 · Zbl 1407.53004
[15] Pavkovic BJ, Kamenarovic I. The equiform differential geometry of curves in the Galilean spaceG3. Glas Mat 1987; 22(42): 449-457. · Zbl 0652.53009
[16] Struik DJ. Lectures on classical differential geometry. NewYork: Dover; 1988. · Zbl 0697.53002
[17] Yaglom IM. A simple non-Euclidean geometry and its physical basis. NewYork: SpringerVerlag; 1979. · Zbl 0393.51013
[18] Yenero˘glu M. On new characterization of inextensible flows of space-like curves in de Sitterspace, Open Mathematics 2016; 14: 946-954. · Zbl 1355.53050
[19] Yılmaz S. Construction of Frenet-Serret frame of a curve in 4D Galilean Space and some applications. Int Phys Sci 2010; 8: 1284-1289.
[20] Yoon DW. On the inclined curves in Galilean 4-space. Appl Math Sci 2013; 7(44): 2193-2199.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.