×

The \(\mu\)-Darboux transformation of minimal surfaces. (English) Zbl 1454.53010

The study of the \(\mu\)-Darboux transformation of minimal surfaces is based on conformal immersions and Willmore surfaces. First, the authors recall certain notions: generalized Darboux transformations, minimal surfaces, generally conformal immersions of a manifold and Hopf fields. Using an extension of the notion of the associated family \(f_{p,q}\) of a minimal surface to allow quaternionic parameters, the authors show that the pointwise limit of Darboux transformations of \(f:M\to \mathbb{R}^4\) is associated Willmore surface of \(f\) at \(\mu=1\). More precisely, the authors prove the following Theorem: “A conformal immersion \(f:M\to \mathbb{R}^4\), which is not complex holomorphic, is minimal if and only if the kernel of the Hopf field \(A\) is the point at \(\infty\).” Two examples are presented. The subject examined in this paper is interesting. The exposition is clear.

MSC:

53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53C43 Differential geometric aspects of harmonic maps

References:

[1] Burstall, F.; Ferus, D.; Leschke, K.; Pedit, F.; Pinkall, U., Conformal Geometry of Surfaces in \({S}^4\) and Quaternions (2002), Berlin: Springer, Berlin · Zbl 1033.53001
[2] Burstall, FE; Hertrich-Jeromin, U.; Pedit, F.; Pinkall, U., Curved flats and isothermic surfaces, Math. Z., 225, 199-209 (1997) · Zbl 0902.53038 · doi:10.1007/PL00004308
[3] Bohle, C.; Leschke, K.; Pedit, F.; Pinkall, U., Conformal maps from a 2-torus to the 4-sphere, J. Reine Angew. Math., 671, 1-30 (2012) · Zbl 1261.53057 · doi:10.1515/CRELLE.2011.156
[4] Bohle, C., Constrained Willmore tori in the 4-sphere, J. Differ. Geom., 86, 1, 71-131 (2010) · Zbl 1217.53059 · doi:10.4310/jdg/1299766684
[5] Burstall, F.; Quintino, A., Dressing transformations of constrained Willmore surfaces, Commun. Anal. Geom., 22, 469-518 (2014) · Zbl 1306.53051 · doi:10.4310/CAG.2014.v22.n3.a4
[6] Burstall, F.E.: Isothermic surfaces: conformal geometry, Clifford algebras and integrable systems. In: Integrable Systems, Geometry, and Topology of AMS/IP Stud. Adv. Math., vol. 36, pp. 1-82. Am. Math. Soc., Providence (2006) · Zbl 1105.53002
[7] Cayley, A., On certain results relating to quaternions, Math. Pap., 1, 123-126 (1889)
[8] Christoffel, E., Ueber einige allgemeine Eigenschaften der Minimumsflächen, Crelle’s J., 67, 218-228 (1867) · ERAM 067.1748cj
[9] Carberry, E.; Leschke, K.; Pedit, F., Darboux transforms and spectral curves of constant mean curvature surfaces revisited, Ann. Glob. Anal. Geom., 43, 4, 299-329 (2013) · Zbl 1276.53066 · doi:10.1007/s10455-012-9347-8
[10] Darboux, G., Sur les surfaces isothermiques, C. R. Acad. Sci. Paris, 128, 1299-1305 (1899) · JFM 30.0555.02
[11] Dajczer, M.; Tojeiro, R., All superconformal surfaces in \({\mathbb{ R}}^4\) in terms of minimal surfaces, Math. Z., 261, 869-890 (2009) · Zbl 1163.53035 · doi:10.1007/s00209-008-0355-0
[12] Eisenhart, L., Minimal surfaces in Euclidean four-space, Am. J. Math., 34, 3, 215-236 (1912) · JFM 43.0732.01 · doi:10.2307/2370220
[13] Ejiri, N., Willmore surfaces with a duality in \({S}^n(1)\), Proc. Lond. Math. Soc., 3-57, 2, 383-416 (1988) · Zbl 0671.53043 · doi:10.1112/plms/s3-57.2.383
[14] Ferus, D.; Leschke, K.; Pedit, F.; Pinkall, U., Quaternionic holomorphic geometry: Plücker formula, Dirac eigenvalue estimates and energy estimates of harmonic 2-tori, Invent. Math., 146, 507-593 (2001) · Zbl 1038.53046 · doi:10.1007/s002220100173
[15] Hitchin, N., Harmonic maps from a \(2\)-torus to the \(3\)-sphere, J. Differ. Geom., 31, 3, 627-710 (1990) · Zbl 0725.58010 · doi:10.4310/jdg/1214444631
[16] Hertrich-Jeromin, U.: Models in Moebius Differential Geometry. Habilitations schrift (2002)
[17] Hertrich-Jeromin, U.; Pedit, F., Remarks on the Darboux transfoms of isothermic surfaces, Doc. Math. J. DMV, 2, 313-333 (1997) · Zbl 0892.53003
[18] Leschke, K.: Transformations of isothermic surfaces. In preparation · Zbl 1451.53091
[19] Leschke, K., Harmonic map methods for Willmore surfaces, Cont. Math., 542, 204-212 (2011) · Zbl 1229.53066
[20] Leschke, K.; Moriya, K., Applications of quaternionic holomorphic geometry to minimal surfaces, Complex Manifolds, 3, 1, 282-300 (2016) · Zbl 1359.30054 · doi:10.1515/coma-2016-0015
[21] Leschke, K.; Moriya, K., Simple factor dressing and the Lopez-Ros deformation of minimal surfaces, Math. Z., 291, 1015-1058 (2018) · Zbl 1428.58014 · doi:10.1007/s00209-018-2217-8
[22] Leschke, K.; Romon, P., Spectral curve of Hamiltonian stationary tori, Calc. Var. Partial Differ. Equ., 38, 1, 45-74 (2010) · Zbl 1203.53049 · doi:10.1007/s00526-009-0278-6
[23] Montiel, S., Willmore two-spheres in the four sphere, Trans. Am. Math. Soc., 352, 4449-4486 (2000) · Zbl 0961.53035 · doi:10.1090/S0002-9947-00-02571-X
[24] Moriya, K., Super-conformal surfaces associated with null complex holomorphic curves, Bull. Lond. Math. Soc., 41, 327-331 (2009) · Zbl 1162.53045 · doi:10.1112/blms/bdp005
[25] Rigoli, M., The conformal Gauss map of submanifolds of the Moebius space, Ann. Glob. Anal. Geom, 5, 2, 97-116 (1987) · Zbl 0642.53014 · doi:10.1007/BF00127853
[26] Uhlenbeck, K., Harmonic maps into Lie groups (classical solutions of the chiral model), J. Diff. Geom., 30, 1-50 (1989) · Zbl 0677.58020 · doi:10.4310/jdg/1214443286
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.