×

\(Tb\) theorem for the generalized singular integral operator on product Lipschitz spaces with para-accretive functions. (English) Zbl 1454.42014

Spaces \(\mathrm{Lip}_b(\alpha_1,\alpha_2)(\mathbb{R}^n\times\mathbb{R}^m)\) are defined for product \(b=b_1b_2\) para-accretive functions and a \(Tb\) theorem for generalized singular integral operators on these spaces is established. A function \(b\) defined on \(\mathbb{R}^n\) is para-accretive if there are \(C>0\) and \(\delta>0\) such that for any cube \(Q\subset\mathbb{R}^n\) there is a subcube \(Q^\prime\) such that \(\delta|Q|\leq |Q^\prime|\) and \(\frac{1}{|Q|}\Bigl| \int_{Q^\prime} b(x)\, dx\Bigr|\geq C\). The space \(\mathrm{Lip}(\alpha_1,\alpha_2)(\mathbb{R}^n\times\mathbb{R}^m)\) consists of those \(f\) such that \[|f(x-u,y-v)-f(x,y-v)-f(x-u,y)+f(x,y)|\leq C|u|^{\alpha_1}|v|^{\alpha_2} \] (with norm defined as the smallest \(C\) such that the inequality holds for all \((x,y)\in (\mathbb{R}^n\times\mathbb{R}^m\)). One defines \(\mathrm{Lip}_b(\alpha_1,\alpha_2)=\{f: fb\in\mathrm{Lip}(\alpha_1,\alpha_2)\}\) where \(b(x,y)=b_1(x)b_2(y)\). One defines \(C_0^\eta(\mathbb{R}^n)\) to be those compactly supported \(f\) such that \(\sup_{x\neq y}\frac{|f(x)-f(y)|}{|x-y|^\eta}<\infty\). One defines a corresponding product space with product norms in terms of the differences defined above. One defines a product Calderón-Zygmund operator in terms of a product kernel \(K(x_1,y_1;x_2,y_2)\) satisfying standard CZO estimates in each parameter along with additional joint decay estimates on cross-parameter differences. One defines a general singular integral operator \(T\) as a continuous linear operator from \(b C_0^\eta(\mathbb{R}^n\times\mathbb{R}^m)\) into \((b C_0^\eta(\mathbb{R}^n\times\mathbb{R}^m))^\prime\) associated with a product CZO kernel such that the formal integrals \(\langle M_b T M_b f_1\otimes f_2, \, g_1\otimes g_2\rangle\) are defined by product integration against the kernel for Hölder continuous test functions \(f_i\), \(g_i\) having disjoint supports. One also defines test functions of type \((\beta_1,\beta_2,\gamma_1,\gamma_2)\) centered at \((x_0,y_0)\in \mathbb{R}^n\times\mathbb{R}^m\) satisfying standard molecular-type estimates, again, with additional decay on cross-parameter differences, and satisfying vanishing mean values in each parameter weighted against the para-accretive functions \(b_i\), e.g., \(\int_{\mathbb{R}^n} f(x,y) b_1(x)\, dx=0\) for all \(y\). One defines a class \(\mathcal{M}(x_0,y_0;d_1,d_2;\beta_1,\beta_2;\gamma_1,\gamma_2)\) satisfying all the desired inequalities and moment conditions.
The first theorem establishes that \(\mathrm{Lip}(\alpha_1,\alpha_2)\) and \(\mathrm{Lip}_b(\alpha_1,\alpha_2)\) consist of elements of the classes \(\mathcal{M}(\beta_1,\beta_2;\gamma_1,\gamma_2)\) satisfying uniform bounds with respect to the semi-norms defining these classes. The main result is the following \(Tb\) theorem: let \(b(x,y)=b_1(x)b_2(y)\) where \(b_1\) and \(b_2\) are para-accretive in \(\mathbb{R}^n\) and \(\mathbb{R}^m\) respectively. Let \(T\) be a generalized singular integral operator on \(L^2(\mathbb{R}^{n+m})\). Then \(T\) is bounded from \(\mathrm{Lip}_b(\alpha_1,\alpha_2)(\mathbb{R}^n\times\mathbb{R}^m)\) to \(\mathrm{Lip}(\alpha_1,\alpha_2)(\mathbb{R}^n\times\mathbb{R}^m)\) for \(\alpha_i\in (0,\epsilon)\) (where \(\epsilon\) is the usual parameter that appears in the CZO kernel estimates) if and only if \(T_1b_1=T_2b_2=0\).
A product approximate identity allows for Littlewood-Paley type estimates to be formulated. A further Calderón-type reproducing formula is also used, and a new class of (homogeneous) product Besov spaces is introduced.

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory
42B30 \(H^p\)-spaces
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

References:

[1] Calder´on, Alberto P.; Zygmund, Antoni.On the existence of certain singular integrals.Acta Math.88(1952), 85-139.MR0052553,Zbl 0047.10201, doi:10.1007/BF02392130.1028 · Zbl 0047.10201
[2] David, Guy;Journ´e, Jean-Lin.A boundedness criterion for generalized Calder´on-Zygmund operators.Ann. of Math. (2)120(1984), no. 2, 371-397. MR0763911,Zbl 0567.47025, doi:10.2307/2006946.1029 · Zbl 0567.47025
[3] David, Guy; Journ´e, Jean-Lin; Semmes, Stephen W.Op´erateurs de Calder´onZygmund, fonctions para-accr´etives et interpolation.Rev. Mat. Iberoamericana1 (1985), no. 4, 1-56.MR0850408,Zbl 0604.42014, doi:10.4171/RMI/17.1029,1030, 1035
[4] Fefferman,Charles;Stein,Elias M.Hpspaces of several variables. Acta Math.129(1972),no. 3-4,137-193.MR0447953,Zbl 0257.46078, doi:10.1007/BF02392215.1030 · Zbl 0257.46078
[5] Fefferman, Robert; Stein, Elias M.Singular integrals on product spaces. Adv. in Math.45(1982),no. 2,117-143.MR0664621,Zbl 0517.42024, doi:10.1016/s0001-8708(82)80001-7.1030 · Zbl 0517.42024
[6] Grafakos, Loukas.Classical and modern Fourier analysis.Pearson Education, Inc., Upper Saddle River, NJ, 2004. xii+931 pp. ISBN: 0-13-035399-X. MR2449250,Zbl 1148.42001.1029 · Zbl 1148.42001
[7] Han, Yanchang; Han, Yongsheng.Boundedness of composition operators associated with mixed homogeneities on Lipschitz spaces.Math. Res. Lett.23(2016), no. 5, 1387-1403.MR3601071,Zbl 1368.42014, doi:10.4310/MRL.2016.v23.n5.a7. 1030 · Zbl 1368.42014
[8] Han, Yongsheng.Calder´on-type reproducing formula and theT btheorem. Rev. Mat. lberoamericana10(1994), no. 1, 51-91.MR1271757,Zbl 0797.42009, doi:10.4171/RMI/145.1034,1053 · Zbl 0797.42009
[9] Han, Yongsheng; Li, Ji; Lin, Chin-Cheng.Criterion of theL2boundedness and sharp endpoint estimates for singular integral operators on product spaces of homogeneous type.Ann. Sc. Norm. Super. Pisa Cl. Sci.16(2016), no. 3, 845-907. MR3618079,Zbl 1362.42029, doi:10.2422/2036-2145.201411 002.1033 · Zbl 1362.42029
[10] Han, Yongsheng; Lee, Ming-Yi; Lin, Chin-Cheng.Hardy spaces and the T btheorem.J. Geom. Anal.14(2004), 291-318.MR2051689,Zbl 1059.42015, doi:10.1007/bf02922074.1029 · Zbl 1059.42015
[11] Han, Yongsheng; Lee, Ming-Yi; Lin, Chin-Cheng.Para-accretive functions and Hardy spaces.Integral Equations Operator Theory72(2012), no. 1, 67-90. MR2872606,Zbl 1266.42053, doi:10.1007/s00020-011-1915-y.1030 · Zbl 1266.42053
[12] Han, Yongsheng; Lee, Ming-Yi; Lin, Chin-Cheng.T btheorem on product spaces.Math. Proc. Cambridge Philos. Soc.161(2016), no. 1, 117-141. MR3505674,Zbl 1371.42014, doi:10.1017/S0305004116000177.1030,1032,1033, 1036 · Zbl 1371.42014
[13] Han,Yongsheng;Lee,Ming-Yi;Lin,Chin-Cheng;Lin,YingChieh.Calder´on-Zygmund operators on product Hardy spaces.J. Funct. Anal.258(2010),no.8,2834-2861.MR2593346,Zbl1197.42006, doi:10.1016/j.jfa.2009.10.022.1029,1030 · Zbl 1197.42006
[14] Hart, Jarod.A bilinearT(b) theorem for singular integral operators.J. Funct. Anal.268(2015), no. 12, 3680-3733.MR3341962,Zbl 1317.42014, doi:10.1016/j.jfa.2015.02.008.1030 · Zbl 1317.42014
[15] Journ´e,Jean-Lin.Calder´on-Zygmund operators on product spaces.Rev. Mat. Iberoamericana1(1985), no. 3, 55-91.MR0836284,Zbl 0634.42015, doi:10.4171/RMI/15.1030,1031 · Zbl 0634.42015
[16] Krantz, Steven G.Lipschitz spaces on stratified groups.Trans. Amer. Math. Soc.269(1982), no. 1, 39-66.MR0637028,Zbl 0529.22006, doi:10.1090/S00029947-1982-0637028-6.1030 · Zbl 0529.22006
[17] Lee, Ming-Yi; Li, Ji; Lin, Chin-Cheng.Product Hardy spaces associated with para-accretive functions andT btheorem.New York J. Math.25(2019), 1438- 1484.MR4044376,Zbl 1429.42016.1030,1034,1036 · Zbl 1429.42016
[18] Mac´ıas, Roberto A.; Segovia, Carlos.Lipschitz functions on spaces of homogeneous type.Adv. in Math.33(1979), no. 3, 257-270.MR0546295,Zbl 0431.46018, doi:10.1016/0001-8708(79)90012-4.1030 · Zbl 0431.46018
[19] McIntosh, Alan; Meyer, Yves.Alg‘ebres d’op´erateurs definis par des int´egrales singuli‘eres. (French) [Algebras of singular integral operators].C. R. Acad. Sci. Paris S´er. I Math.301(1985), no. 8, 395-397.MR0808636,Zbl 0584.47030.1029 · Zbl 0584.47030
[20] Meyer, Yves; Coifman, Ronald.Wavelets, Calder´on-Zygmund and multilinear operators. Translated by David Salinger. Cambridge Studies in Advanced Mathematics, 48.Cambridge University Press, Cambridge, 1997. xx+315 pp. ISBN: 0-521-42001-6; 0-521-79473-0.MR1456993,Zbl 0916.42023.1029
[21] Triebel, Hans.Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers.Rev. Mat. Complut. 15(2002), no. 2, 475-524.MR1951822,Zbl 1034.46033, doi:10.5209/rev REMA.2002.v15.n2.16910.1030 · Zbl 1034.46033
[22] Zheng, Taotao; Tao, Xiangxing.T bcriteria for Calder´on-Zygmund operators on Lipschitz spaces with para-accretive function.Publ. Math. Debrecen.95(2019), no. 3-4, 487-503.MR4033871,Zbl 07134861, doi:10.5486/PMD.2019.8582.1030 · Zbl 1449.42028
[23] Zheng, Taotao; Chen,Jiecheng; Dai Jiawei; He Shaoyong; Tao, Xiangxing.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.