×

Coexistence of subharmonic periodic solutions having various periods of differential inclusions on the circle with admissible impulses of degrees \(D=-1,0,1\). (English) Zbl 1454.37039

Summary: Our new Sharkovsky-type cycle coexistence theorems for multivalued admissible maps on the circle, whose degrees equal \(d=-1,0,1\), are derived and applied to impulsive differential inclusions. Although the obtained theorems for admissible maps of degrees \(d=-1,0\) can be formulated “only” in terms of irreducible periodic orbits of coincidences, they are sufficient for effective applications. The most delicate case for \(d=1\) demands a different approach, because the maps can be fixed point free. On the other hand, unlike for degrees \(d=-1,0\), the results for admissible maps of degree 1 can be also exclusively applied to differential inclusions without impulses.

MSC:

37E10 Dynamical systems involving maps of the circle
34A60 Ordinary differential inclusions
34K45 Functional-differential equations with impulses
47H04 Set-valued operators
47H11 Degree theory for nonlinear operators
Full Text: DOI

References:

[1] Alsedà, L.; Llibre, J., A note on the set of periods for continuous maps of the circle which have degree one, Proc. Am. Math. Soc., 93, 1, 133-138 (1985) · Zbl 0562.54064 · doi:10.2307/2044569
[2] Alsedà, L.; Llibre, J.; Misiurewicz, M., Combinatorial Dynamics and Entropy in Dimension One (2000), Singapore: World Scientific Publishing, Singapore · Zbl 0963.37001
[3] Andres, J., On the coexistence of irreducible orbits of coincidences for multivalued admissible maps on the circle via Nielsen theory, Topol. Appl., 221, 596-609 (2017) · Zbl 1378.37073 · doi:10.1016/j.topol.2017.02.071
[4] Andres, J., Coexistence of periodic solutions with various periods of impulsive differential equations and inclusions on tori via Poincaré operators, Topol. Appl., 255, 126-140 (2019) · Zbl 1418.34093 · doi:10.1016/j.topol.2019.01.008
[5] Andres, J., The standard Sharkovsky cycle coexistence theorem applies to impulsive differential equations: some notes and beyond, Proc. Am. Math. Soc., 147, 4, 1497-1509 (2019) · Zbl 1408.34034 · doi:10.1090/proc/14387
[6] Andres, J.; Fišer, J., Sharkovsky-type theorems on \(S^1\) applicable to differential equations, Int. J. Bifurc. Chaos, 27, 3, 1-21 (2017) · Zbl 1360.37065 · doi:10.1142/S0218127417500420
[7] Andres, J.; Górniewicz, L., Topological Fixed Point Principles for Boundary Value Problems (2003), Dordrecht: Kluwer, Dordrecht · Zbl 1029.55002
[8] Andres, J.; Górniewicz, L.; Jezierski, J., Periodic points of multivalued mappings with applications to differential inclusions on tori, Topol. Appl., 127, 3, 447-472 (2003) · Zbl 1034.34014 · doi:10.1016/S0166-8641(02)00104-9
[9] Andres, J., Pastor, K.: Sharp Block-Sharkovsky type theorem for multivalued maps on the circle and its application to differential equations and inclusions, Int. J. Bifurc. Chaos, to appear · Zbl 1436.37050
[10] Andres, J.; Pastor, K.; Šnyrychová, P., A multivalued version of Sharkovskiĭ’s theorem holds with at most two exceptions, J. Fixed Point Theory Appl., 2, 1, 153-170 (2007) · Zbl 1128.37025 · doi:10.1007/s11784-007-0029-2
[11] Bernhardt, Ch, Periodic orbits of continuous mappings of the circle without fixed points, Ergod. Theory Dyn. Syst., 1, 4, 413-417 (1981) · Zbl 0487.58021 · doi:10.1017/S0143385700001346
[12] Bernhardt, Ch, Periodic points and topological entropy of maps of the circle, Proc. Am. Math. Soc., 87, 2, 516-518 (1983) · Zbl 0513.54024 · doi:10.1090/S0002-9939-1983-0684649-7
[13] Block, L., Periodic orbits of continuous mappings of the circle, Trans. Am. Math. Soc., 260, 2, 553-562 (1980) · Zbl 0497.54040 · doi:10.1090/S0002-9947-1980-0574798-8
[14] Block, L., Periods of periodic points of maps of the circle which have a fixed point, Proc. Am. Math. Soc., 82, 3, 481-486 (1981) · Zbl 0464.54046 · doi:10.1090/S0002-9939-1981-0612745-7
[15] Block, L., Guckenheimer, J., Misiurewicz, M., Young, L.-S.: Periodic points and topological entropy of one-dimensional maps. In: Nitecki, Z., Robinson, C. (eds.) Global Theory of Dynamical Systems. Lecture Notes in Math., vol. 819, pp. 18-34. Springer, Berlin (1980) · Zbl 0447.58028
[16] Bamon, R.; Malta, I.; Pacifico, M.; Takens, F., Rotation intervals of endomorphisms of the circle, Ergod. Theory Dyn. Syst., 4, 4, 493-498 (1984) · Zbl 0605.58027 · doi:10.1017/S0143385700002595
[17] Coddington, EA; Levinson, N., Theory of Differential Equations (1955), New York: McGraw-Hill, New York · Zbl 0064.33002
[18] Dzedzej, Z.; Jezierski, J., On the Nielsen fixed point theory for multivalued mappings, Nielsen Theory and Reidemeister Torsion, Banach Center Publ, 69-75 (1999), Warsaw: Polish Academy of Sciences, Warsaw · Zbl 0942.55004
[19] Efremova, L.S.: Periodic orbits and a degree of a continuous map of a circle, Diff. Integr. Eqns (Gor’kii) 2 (in Russian), 109-115 (1978)
[20] Górniewicz, L., Topological Fixed Point Theory of Multivalued Mappings (2009), Berlin: Springer, Berlin
[21] Jezierski, J., The Nielsen relation for multivalued maps, Serdica, 13, 2, 174-181 (1987) · Zbl 0652.55004
[22] Misiurewicz, M., Periodic points of maps of degree one of a circle, Ergod. Theory Dyn. Syst., 2, 2, 221-227 (1982) · Zbl 0508.58038 · doi:10.1017/S014338570000153X
[23] Newhouse, S.; Palis, J.; Takens, F., Bifurcations and stability of families of diffeomorphisms, Publ. Mathématiques de l’IHÉS, 57, 5-71 (1983) · Zbl 0518.58031 · doi:10.1007/BF02698773
[24] Sharkovsky, AN, Coexistence of cycles of a continuous map of the line into itself, Int. J. Bifur. Chaos, 5, 1263-1273 (1995) · Zbl 0890.58012 · doi:10.1142/S0218127495000934
[25] Siegberg, H.W.: Chaotic mappings on \({S}^1\), periods one, two, three imply chaos on \(S^1\). In: Proceedings of the Conference: Numerical solutions of nonlinear equations (Bremen, 1980). Lecture Notes in Mathematics, vol. 878, pp. 351-370. Springer, Berlin (1981) · Zbl 0468.54031
[26] Zhao, X., Periodic orbits with least period three on the circle, Fixed Point Theory Appl., 2008, 194875, 1-8 (2008) · Zbl 1144.37434
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.