×

Pyramidal traveling fronts in the Belousov-Zhabotinskii reaction-diffusion systems in \(\mathbb{R}^3\). (English) Zbl 1454.35045

Summary: In this article, we consider a diffusion system with the Belousov-Zhabotinskii (BZ for short) chemical reaction. The existence and stability of V-shaped traveling fronts for the BZ system in \(\mathbb{R}^2\) had been proved in our previous papers [H.-T. Niu et al., J. Differ. Equations 264, No. 9, 5758–5801 (2018; Zbl 1394.35220); Nonlinear Anal., Real World Appl. 46, 493–524 (2019; Zbl 1409.35097)]. Here we establish the existence and stability of pyramidal traveling fronts for the BZ system in \(\mathbb{R}^3\).

MSC:

35C07 Traveling wave solutions
35K45 Initial value problems for second-order parabolic systems
35K57 Reaction-diffusion equations
35Q92 PDEs in connection with biology, chemistry and other natural sciences
92E20 Classical flows, reactions, etc. in chemistry

References:

[1] B. P. Belousov; A periodic reaction and its mechanism.Ref. Radiat. Med. Medgiz, (1959), 145.
[2] A. Bonnet, F. Hamel; Existence of nonplanar solutions of a simple model of premixed Bunsen flames.SIAM J. Math. Anal., 31 (1999), 80-118. · Zbl 0942.35072
[3] Z.-H. Bu, Z.-C. Wang; Stability of pyramidal traveling fronts in the degenerate monostable and combustion equations I.Discrete Contin. Dyn. Syst., 37 (2017), 2395-2430. · Zbl 1358.35014
[4] C. Conley, R. Gardner; An application of the generalized Morse index to travelling wave solutions of a competitive reaction-diffusion model.Indiana Univ. Math. J., 33 (1984), 319343. · Zbl 0565.58016
[5] D. Finkelshtein, Y. Kondratiev, P. Tkachov; Existence and properties of traveling waves for doubly nonlocal Fisher-KPP equations,Electron. J. Differential Equations, 2019 (2019), No. 10, 1-27. · Zbl 1407.35046
[6] R. A. Fisher; The wave of advance of advantageous genes.Ann. Human Genetics, 7 (1937), 353-369. · JFM 63.1111.04
[7] A. Friedman.Partial differential equations of parabolic type. Prentice-Hall, Inc., Englewood Cliffs, NJ 1964. · Zbl 0144.34903
[8] R. J. Field, E. Koros, R. M. Noyes; Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system.J. American Chemical Society, 94 (1972), 8649-8664.
[9] R. J. Field, R.M. Noyes; Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction.J. Chemical Physics, 60 (1974), 1877-1884.
[10] P. C. Fife, J. B. Mcleod; The approach of solutions of nonlinear diffusion equations to travelling wave solutions.Bull. Amer. Math. Soc., 81 (1975), 1076-1078. · Zbl 0318.35046
[11] R. A. Gardner; Existence and stability of travelling wave solutions of competition models: a 28L. MA, H.-T. NIU, Z.-C. WANGEJDE-2020/112 · Zbl 0446.35012
[12] G.A. Klaasen, W.C. Troy; The asymptotic behavior of solutions of a system of reactiondiffusion equations which models the Belousov-Zhabotinskii chemical reaction.J. Differential Equations, 40 (1981), 253-278. · Zbl 0467.35015
[13] X. Liang, X.-Q. Zhao; Asymptotic speeds of spread and traveling waves for monotone semiflows with application,Comm. Pure Appl. Math., 60 (2007), 1-40. · Zbl 1106.76008
[14] K. Mischaikow, V. Hutson; Travelling waves for mutualist species.SIAM J. Math. Anal., 24 (1993), 987-1008. · Zbl 0815.35044
[15] J. D. Murray;Lectures on nonlinear-differential-equation. Models in biology.Clarendon Press, Oxford, 1977. · Zbl 0379.92001
[16] J. D. Murray; On travelling wave solutions in a model for the Belousov-Zhabotinskii reaction. J. Theoret. Biol., 56 (1976), 329-353.
[17] W.-M. Ni, M. Taniguchi; Traveling fronts of pyramidal shapes in competition-diffusion systems.Netw. Heterog. Media, 8 (2013), 379-395. · Zbl 1270.35171
[18] H. Ninomiya, M. Taniguchi; Existence and global stability of traveling curved fronts in the Allen-Cahn equations.J. Differential Equations, 213 (2005), 204-233. · Zbl 1159.35378
[19] H. Ninomiya, M. Taniguchi; Global stability of traveling curved fronts in the Allen-Cahn equations.Discrete Contin. Dyn. Syst., 15 (2006), 819-832. · Zbl 1118.35012
[20] H.-T. Niu, Z.-C. Wang, Z.-H. Bu; Curved fronts in the Belousov-Zhabotinskii reactiondiffusion systems inR2.J. Differential Equations, 264 (2018), 5758-5801. · Zbl 1394.35220
[21] H.-T. Niu, Z.-H. Bu, Z.-C. Wang; Global stability of curved fronts in the BelousovZhabotinskii reaction-diffusion systems inR2.Nonlinear Anal. Real World Appl., 46(2019), 493-524. · Zbl 1409.35097
[22] M. H. Protter, H. F. Weinberger;Maximum principles in differential equations. Corrected reprint of the 1967 original.Springer-Verlag, New York, 1984.
[23] D. H. Sattinger; Monotone methods in nonlinear elliptic and parabolic boundary value problems.Indiana Univ. Math. J., 21 (1971/72), 979-1000. · Zbl 0223.35038
[24] M. Taniguchi; Traveling fronts of pyramidal shapes in the Allen-Cahn equations.SIAM J. Math. Anal., 39 (2007), 319-344. · Zbl 1143.35073
[25] M. Taniguchi; The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations.J. Differential Equations, 246 (2009), 2103-2130. · Zbl 1176.35101
[26] M. Taniguchi; Convex compact sets inRN−1give traveling fronts of cooperation-diffusion systems inRN.J. Differential Equations, 260 (2016), 4301-4338. · Zbl 1336.35105
[27] E. Trofimchuk, M. Pinto, S. Trofimchuk; Traveling waves for a model of the BelousovZhabotinskii reaction.J. Differential Equations, 254 (2013), 3690-3714. · Zbl 1271.34066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.