×

Spreading speeds for reaction-diffusion equations with a shifting habitat. (English) Zbl 1453.92350

Summary: We study the spreading speeds of a species described by a reaction-diffusion equation with a shifting habitat on which the species’ growth rate increases in the positive spatial direction. Persistence and the rightward spreading speed have been previously investigated in the case that the species grows near positive infinity and declines near negative infinity. In the present paper we determine the leftward spreading speed for this case and both the rightward and leftward spreading speeds for the case that the species grows everywhere in space. We show that the spreading speeds depend on \(c\), the speed at which the habitat shifts, and numbers \(c^*(\infty)\) and \(c^*(-\infty)\) given by the diffusion coefficient and species growth rates at \(\infty\) and \(-\infty\) respectively. We demonstrate that if the species declines near negative infinity, the leftward spreading speed is \(\min \{-c, c^*(\infty)\}\), and if species grows everywhere, under appropriate conditions, the rightward spreading speed is either \(c^*(\infty)\) or \(c^*(-\infty)\), and the leftward spreading speed is one of \(c^*(\infty),c^*(-\infty)\) and \(-c\). Our results show that it is possible for a solution to form a two-layer wave, with the propagation speeds analytically determined.

MSC:

92D40 Ecology
92D25 Population dynamics (general)
35K57 Reaction-diffusion equations
Full Text: DOI

References:

[1] Aronson, DG; Weinberger, HF, Nonlinear Diffusion in Population Genetics, Combustion, and Nerve Impulse Propagation in Partial Differential Equations and Related Topics, 5-49 (1975), Berlin: Springer, Berlin
[2] Aronson, D.G., Weinberger, H.F.: The asymptotic speed of propagation of a simple epidemic. NSF-CBMS Regional Conference Nonlinear Diffusion Equations. Research Notes in Mathematics, 14. Pitman, London (1977)
[3] Aronson, DG; Weinberger, HF, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., 30, 33-76 (1978) · Zbl 0407.92014 · doi:10.1016/0001-8708(78)90130-5
[4] Berestycki, H.; Diekmann, O.; Nagelkerke, CJ; Zegeling, PA, Can a species keep pace with a shifting climate?, Bull. Math. Biol., 71, 399-429 (2009) · Zbl 1169.92043 · doi:10.1007/s11538-008-9367-5
[5] Berestycki, H.; Fang, J., Forced waves of the Fisher-KPP equation in a shifting environment, J. Differ. Equ., 264, 2157-2183 (2018) · Zbl 1377.35162 · doi:10.1016/j.jde.2017.10.016
[6] Berestycki, H.; Ross, J., Reaction diffusion equations for populationdynamics with forced speed. I. The case of the whole space, Discret. Contin. Dyn. Syst., 21, 41-67 (2008) · Zbl 1173.35542 · doi:10.3934/dcds.2008.21.41
[7] Berestycki, H.; Ross, L., Reaction diffusion equations for populationdynamics with forced speed. II. Cylindrical type domains, Discret. Contin. Dyn. Syst., 25, 19-61 (2009) · Zbl 1183.35166 · doi:10.3934/dcds.2009.25.19
[8] Bouhours, J.; Giletti, T., Spreading and vanishing for a monostable reaction diffusion equation with forced speed, J. Dyn. Differ. Equ., 31, 247-286 (2018) · Zbl 1516.35069 · doi:10.1007/s10884-018-9643-5
[9] Cantrell, RS; Cosner, C., Spatial Ecology via Reaction-Diffusion Equations (2003), New York: Wiley, New York · Zbl 1059.92051
[10] Fang, J.; Lou, Y.; Wu, J., Can pathogen spread keep pace with its host invasion?, SIAM J. Appl. Math., 76, 1633-1657 (2016) · Zbl 1347.35223 · doi:10.1137/15M1029564
[11] Fisher, RA, The wave of advance of advantageous genes, Ann. Hum. Genet., 7, 353-369 (1937) · JFM 63.1111.04
[12] Hamel, F., Reaction-diffusion problems in cylinders with no invariance by translation. II. Monotone perturbations, Ann. Inst. Henri Poincaré Anal. Non Linéaire, 14, 555-596 (1997) · Zbl 0902.35036 · doi:10.1016/S0294-1449(97)80126-6
[13] Hamel, F.; Roques, L., Uniqueness and stability properties of monostable pulsating fronts, J. Eur. Math. Soc., 13, 345-390 (2011) · Zbl 1219.35035 · doi:10.4171/JEMS/256
[14] Kolmogorov, A.; Petrovskii, I.; Piscounov, N., Etude de equation de la diffusion avec croissance de la quantite de matiere et son application a un probleme biologique, Mosc. Univ. Math. Bull., 1, 126 (1937)
[15] Kolmogorov, A.; Petrovskii, I.; Piscounov, N.; Tikhomirov, VM, A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem, Selected Works of A. N. Kolmogorov I, 248-270 (1991), Alphen aan den Rijn: Kluwer, Alphen aan den Rijn
[16] Lewis, MA; Li, B.; Weinberger, HF, Spreading speeds and the linear conjecture for two-species competition models, J. Math. Biol., 45, 219-233 (2002) · Zbl 1032.92031 · doi:10.1007/s002850200144
[17] Li, B.; Weinberger, HF; Lewis, MA, Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci., 196, 82-98 (2005) · Zbl 1075.92043 · doi:10.1016/j.mbs.2005.03.008
[18] Li, B., Bewick, S., Shang, J., Fagan, W.F.: Persistence and spread of a species with a shifting habitat edge. SIAM J. Appl. Math. 74, 1397-1417 (2014). Erratum to: Persistence and spread of a species with a shifting habitat edge. SIAM J. Appl. Math. 75, 2379-2380 (2015) · Zbl 1345.92164
[19] Li, B.; Bewick, S.; Barnard, RM; Fagan, WF, Persistence and spreading speeds of integro-difference equations with an expanding or contracting habitat, Bull. Math. Biol., 78, 7, 1337-1379 (2016) · Zbl 1361.92057 · doi:10.1007/s11538-016-0180-2
[20] Pao, CV, Nonlinear Parabolic and Elliptic Equations (1992), New York: Plenum Press, New York · Zbl 0777.35001
[21] Protter, M.; Weinberger, H., Maximum Principle in Differential Equations (1967), EnglewoodCliffs: Prentice Hall, EnglewoodCliffs · Zbl 0153.13602
[22] Potapov, AB; Lewis, MA, Climate and competition: the effect of moving range boundaries on habitat invisibility, Bull. Math. Biol., 66, 975-1008 (2004) · Zbl 1334.92454 · doi:10.1016/j.bulm.2003.10.010
[23] Thieme, H., Asymptotic estimates of the solutions of nonlinear integral equations an asympotic speeds for the spread of populations, J. Reine Angew. Math., 306, 94-121 (1979) · Zbl 0395.45010
[24] Thieme, H., Density dependent regulation of spatially distributed population and their asymptotic speed of spread, J. Math. Biol., 8, 173-187 (1979) · Zbl 0417.92022 · doi:10.1007/BF00279720
[25] Wang, XF, On the Cauchy problem for reaction-diffusion equations, Trans. Am. Math. Soc., 337, 549-590 (1993) · Zbl 0815.35048 · doi:10.1090/S0002-9947-1993-1153016-5
[26] Weinberger, HF, Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13, 353-396 (1982) · Zbl 0529.92010 · doi:10.1137/0513028
[27] Weinberger, HF; Lewis, MA; Li, B., Analysis of the linear conjecture for spread in cooperative models, J. Math. Biol., 45, 183-218 (2002) · Zbl 1023.92040 · doi:10.1007/s002850200145
[28] Zhou, Y.; Kot, M., Discrete-time growth-dispersal models with shifting species ranges, Theor. Ecol., 4, 13-25 (2011) · doi:10.1007/s12080-010-0071-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.