×

Stochastic multiscale flux basis for Stokes-Darcy flows. (English) Zbl 1453.76177

Summary: Three algorithms are developed for uncertainty quantification in modeling coupled Stokes and Darcy flows. The porous media may consist of multiple regions with different properties. The permeability is modeled as a non-stationary stochastic variable, with its log represented as a sum of local Karhunen-Loève (KL) expansions. The problem is approximated by stochastic collocation on either tensor-product or sparse grids, coupled with a multiscale mortar mixed finite element method for the spatial discretization. A non-overlapping domain decomposition algorithm reduces the global problem to a coarse scale mortar interface problem, which is solved by an iterative solver, for each stochastic realization. In the traditional domain decomposition implementation, each subdomain solves a local Dirichlet or Neumann problem in every interface iteration. To reduce this cost, two additional algorithms based on deterministic or stochastic multiscale flux basis are introduced. The basis consists of the local flux (or velocity trace) responses from each mortar degree of freedom. It is computed for each subdomain independently before the interface iteration begins. The use of the multiscale flux basis avoids the need for subdomain solves on each iteration. The deterministic basis is computed at each stochastic collocation and used only at this realization. The stochastic basis is formed by further looping over all local realizations of a subdomain’s KL region before the stochastic collocation begins. It is reused over multiple realizations. Numerical tests are presented to illustrate the performance of the three algorithms, with the stochastic multiscale flux basis showing significant savings in computational cost compared to the other two algorithms.

MSC:

76M35 Stochastic analysis applied to problems in fluid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage
35R60 PDEs with randomness, stochastic partial differential equations
65C30 Numerical solutions to stochastic differential and integral equations
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65N75 Probabilistic methods, particle methods, etc. for boundary value problems involving PDEs
76D07 Stokes and related (Oseen, etc.) flows

Software:

MMMFEM

References:

[1] Aarnes, J.; Efendiev, Y., Mixed multiscale finite element methods for stochastic porous media flows, SIAM J. Sci. Comput., 30, 5, 2319-2339 (2008) · Zbl 1171.76022
[2] Aarnes, J.; Krogstad, S.; Lie, K.-A., A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse grids, Multiscale Model. Simul., 5, 2, 337-363 (2006) · Zbl 1124.76022
[3] Arbogast, T., Implementation of a locally conservative numerical subgrid upscaling scheme for two-phase Darcy flow, Locally Conservative Numerical Methods for Flow in Porous Media. Locally Conservative Numerical Methods for Flow in Porous Media, Comput. Geosci., 6, 3-4, 453-481 (2002) · Zbl 1094.76532
[4] Arbogast, T., Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems, SIAM J. Numer. Anal., 42, 576-598 (2004) · Zbl 1078.65092
[5] Arbogast, T.; Pencheva, G.; Wheeler, M.; Yotov, I., A multiscale mortar mixed finite element method, Multiscale Model. Simul., 6, 1, 319 (2007) · Zbl 1322.76039
[6] Arnold, D. N.; Brezzi, F.; Fortin, M., A stable finite element for the Stokes equations, Calcolo, 21, 4, 337-344 (1985), 1984 · Zbl 0593.76039
[7] Asokan, B.; Zabaras, N., A stochastic variational multiscale method for diffusion in heterogeneous random media, J. Comput. Phys., 218, 2, 654-676 (2006) · Zbl 1106.65004
[8] Babuška, I.; Nobile, F.; Tempone, R., A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45, 3, 1005-1034 (2008) · Zbl 1151.65008
[9] Beavers, G.; Joseph, D., Boundary conditions at a naturally impermeable wall, J. Fluid Mech., 30, 197-207 (1967)
[10] Brezzi, F.; Douglas, J.; Marini, L. D., Two families of mixed elements for second order elliptic problems, Numer. Math., 88, 217-235 (1985) · Zbl 0599.65072
[11] Chang, H.; Zhang, D., A comparative study of stochastic collocation methods for flow in spatially correlated random fields, Commun. Comput. Phys., 6, 3, 509-535 (2009) · Zbl 1364.76217
[12] Chen, J.; Sun, S.; Wang, X.-P., A numerical method for a model of two-phase flow in a coupled free flow and porous media system, J. Comput. Phys., 268, 1-16 (2014) · Zbl 1349.76187
[13] Chen, W.; Han, D.; Wang, X., Uniquely solvable and energy stable decoupled numerical schemes for the Cahn-Hilliard-Stokes-Darcy system for two-phase flows in karstic geometry, Numer. Math., 137, 1, 229-255 (2017) · Zbl 1476.76089
[14] Chen, Z.; Hou, T., A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Math. Comput., 72, 541-576 (2003) · Zbl 1017.65088
[15] Chung, E.; Efendiev, Y.; Hou, T. Y., Adaptive multiscale model reduction with generalized multiscale finite element methods, J. Comput. Phys., 320, C, 69-95 (Sept. 2016) · Zbl 1349.76191
[16] Chung, E.; Efendiev, Y.; Lee, C., Mixed generalized multiscale finite element methods and applications, Multiscale Model. Simul., 13, 1, 338-366 (2015) · Zbl 1317.65204
[17] Crouzeix, M.; Raviart, P.-A., Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge, 7, R-3, 33-75 (1973) · Zbl 0302.65087
[18] Dawson, C., A continuous/discontinuous Galerkin framework for modeling coupled subsurface and surface water flow, Comput. Geosci., 12, 4, 451-472 (2008) · Zbl 1259.86001
[19] Deb, M.; Babuška, I.; Oden, J., Solution of stochastic partial differential equations using Galerkin finite element techniques, Comput. Methods Appl. Mech. Eng., 190, 48, 6359-6372 (2001) · Zbl 1075.65006
[20] Discacciati, M.; Miglio, E.; Quarteroni, A., Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math., 43, 1-2, 57-74 (2002), 19th Dundee Biennial Conference on Numerical Analysis, 2001 · Zbl 1023.76048
[21] Discacciati, M.; Quarteroni, A., Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations, (Numerical Mathematics and Advanced Applications (2003), Springer Italia: Springer Italia Milan), 3-20 · Zbl 1254.76051
[22] Discacciati, M.; Quarteroni, A., Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations, Comput. Vis. Sci., 6, 2-3, 93-103 (2004) · Zbl 1299.76252
[23] Dostert, P.; Efendiev, Y.; Hou, T., Multiscale finite element methods for stochastic porous media flow equations and application to uncertainty quantification, Comput. Methods Appl. Mech. Eng., 197, 43-44, 3445-3455 (2008) · Zbl 1194.76112
[24] Efendiev, Y.; Galvis, J.; Hou, T. Y., Generalized multiscale finite element methods (GMsFEM), J. Comput. Phys., 251, 116-135 (2013) · Zbl 1349.65617
[25] Farhat, C.; Roux, F., A method of finite element tearing and interconnecting and its parallel solution algorithm, Int. J. Numer. Methods Eng., 32, 1205-1227 (1991) · Zbl 0758.65075
[26] Fishman, G., Monte Carlo: Concepts, Algorithms, and Applications (1996), Springer: Springer Berlin · Zbl 0859.65001
[27] Galvis, J.; Efendiev, Y., Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model. Simul., 8, 4, 1461-1483 (2010) · Zbl 1206.76042
[28] Galvis, J.; Sarkis, M., Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations, Electron. Trans. Numer. Anal., 26, 350-384 (2007) · Zbl 1170.76024
[29] Galvis, J.; Sarkis, M., FETI and BDD preconditioners for Stokes-Mortar-Darcy systems, Commun. Appl. Math. Comput. Sci., 5, 1-30 (2010) · Zbl 1189.35226
[30] Ganapathysubramanian, B.; Zabaras, N., Modelling diffusion in random heterogeneous media: data-driven models, stochastic collocation and the variational multi-scale method, J. Comput. Phys., 226, 326-353 (2007) · Zbl 1124.65007
[31] Ganis, B.; Klie, H.; Wheeler, M.; Wildey, T.; Yotov, I.; Zhang, D., Stochastic collocation and mixed finite elements for flow in porous media, Comput. Methods Appl. Mech. Eng., 197, 43-44, 3547-3559 (2008) · Zbl 1194.76242
[32] Ganis, B.; Pencheva, G.; Wheeler, M. F.; Wildey, T.; Yotov, I., A frozen Jacobian multiscale mortar preconditioner for nonlinear interface operators, Multiscale Model. Simul., 10, 3, 853-873 (2012) · Zbl 1255.76132
[33] Ganis, B.; Vassilev, D.; Wang, C.; Yotov, I., A multiscale flux basis for mortar mixed discretizations of Stokes-Darcy flows, Comput. Methods Appl. Mech. Eng., 313, 259-278 (2017) · Zbl 1439.76152
[34] Ganis, B.; Yotov, I., Implementation of a mortar mixed finite element method using a multiscale flux basis, Comput. Methods Appl. Mech. Eng., 198, 49-52, 3989-3998 (2009) · Zbl 1231.76145
[35] Ganis, B.; Yotov, I.; Zhong, M., A stochastic mortar mixed finite element method for flow in porous media with multiple rock types, SIAM J. Sci. Comput., 33, 3, 1439-1474 (2011) · Zbl 1326.76059
[36] Ghanem, R.; Spanos, P., Stochastic Finite Elements: A Spectral Approach (1991), Springer-Verlag: Springer-Verlag New York · Zbl 0722.73080
[37] Girault, V.; Vassilev, D.; Yotov, I., Mortar multiscale finite element methods for Stokes-Darcy flows, Numer. Math., 127, 93-165 (2014) · Zbl 1396.76051
[38] Glowinski, R.; Wheeler, M., Domain decomposition and mixed finite element methods for elliptic problems, (First International Symposium on Domain Decomposition Methods for Partial Differential Equations. First International Symposium on Domain Decomposition Methods for Partial Differential Equations, Philadelphia, PA (1988)) · Zbl 0661.65105
[39] Hoppe, R. H.W.; Porta, P.; Vassilevski, Y., Computational issues related to iterative coupling of subsurface and channel flows, Calcolo, 44, 1, 1-20 (2007) · Zbl 1150.76028
[40] Hou, T.; Wu, X., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134, 1, 169-189 (1997) · Zbl 0880.73065
[41] Hughes, T.; Feijóo, G.; Mazzei, L.; Quincy, J., The variational multiscale method: a paradigm for computational mechanics, Comput. Methods Appl. Mech. Eng., 166, 1-2, 3-24 (1998) · Zbl 1017.65525
[42] Layton, W.; Schieweck, F.; Yotov, I., Coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 40, 6, 2195-2218 (2003) · Zbl 1037.76014
[43] Lu, Z.; Zhang, D., Stochastic simulations for flow in nonstationary randomly heterogeneous porous media using a KL-based moment-equation approach, Multiscale Model. Simul., 6, 1, 228-245 (2008) · Zbl 1140.60330
[44] Mandel, J., Balancing domain decomposition, Commun. Numer. Methods Eng., 9, 3, 233-241 (1993) · Zbl 0796.65126
[45] Nobile, F.; Tempone, R.; Webster, C., A sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. Anal., 46, 5, 2309-2345 (2008) · Zbl 1176.65137
[46] Pencheva, G.; Yotov, I., Balancing domain decomposition for mortar mixed finite element methods on non-matching grids, Numer. Linear Algebra Appl., 10, 159-180 (2003) · Zbl 1071.65169
[47] Raviart, R. A.; Thomas, J. M., A mixed finite element method for 2nd order elliptic problems, (Mathematical Aspects of the Finite Element Method. Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics, vol. 606 (1977), Springer-Verlag: Springer-Verlag New York), 292-315 · Zbl 0362.65089
[48] Rivière, B.; Yotov, I., Locally conservative coupling of Stokes and Darcy flows, SIAM J. Numer. Anal., 42, 5, 1959-1977 (2005) · Zbl 1084.35063
[49] Saffman, P., On the boundary condition at the surface of a porous media, Stud. Appl. Math., L, 2, 93-101 (1971) · Zbl 0271.76080
[50] Song, P.; Wang, C.; Yotov, I., Domain decomposition for Stokes-Darcy flows with curved interfaces, Proc. Comput. Sci., 18, 1077-1086 (2013)
[51] Taylor, C.; Hood, P., A numerical solution of the Navier-Stokes equations using the finite element technique, Int. J. Comput. Fluids, 1, 1, 73-100 (1973) · Zbl 0328.76020
[52] Toselli, A.; Widlund, O., Domain Decomposition Methods - Algorithms and Theory (2005), Springer-Verlag: Springer-Verlag Berlin Heidelberg · Zbl 1069.65138
[53] Vassilev, D.; Wang, C.; Yotov, I., Domain decomposition for coupled Stokes and Darcy flows, Comput. Methods Appl. Mech. Eng., 268, 264-283 (2014) · Zbl 1295.76036
[54] Wheeler, M. F.; Xue, G.; Yotov, I., A multiscale mortar multipoint flux mixed finite element method, ESAIM: Math. Model. Numer. Anal. (M2AN), 46, 4, 759-796 (2012) · Zbl 1275.65082
[55] Winter, C. L.; Tartakovsky, D. M., Groundwater flow in heterogeneous composite aquifers, Water Resour. Res., 38, 8 (2002)
[56] Xiu, D.; Hesthaven, J., High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27, 3, 1118-1139 (2005) · Zbl 1091.65006
[57] Xiu, D.; Karniadakis, G., Modeling uncertainty in steady state diffusion problem via generalized polynomial chaos, Comput. Methods Appl. Mech. Eng., 191, 4927-4948 (2002) · Zbl 1016.65001
[58] Zhang, D., Stochastic Methods for Flow in Porous Media: Coping With Uncertainties (2002), Academic Press: Academic Press San Diego, Calif
[59] Zhang, D.; Lu, Z., An efficient, high-order perturbation approach for flow in random porous media via Karhunen-Loève and polynomial expansions, J. Comput. Phys., 194, 2, 773-794 (2004) · Zbl 1101.76048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.