×

Semivectorial bilevel programming versus scalar bilevel programming. (English) Zbl 1453.49003

The core of this paper is the consideration of the relationship between a semivectorial bilevel programming problem and an associated scalar bilevel programming problem which is constructed by applying the weighted-sum-scalarization technique to the multi-objective lower level problem of the original problem. After giving the necessary notation in Section 2, the problem and its surrogate are considered in Section 3. Then Section 4 discusses the precise relationship between semivectorial bilevel programming and scalar bilevel programming. This corrects the results from [S. Dempe et al., J. Optim. Theory Appl. 157, No. 1, 54–74 (2013; Zbl 1266.90160)] and provides some more insights to semivectorial bilevel programming. Finally, the existence of solutions in semivectorial bilevel programming is discussed in Section 5. After giving some theoretical investigations, two classes of examples from bilevel optimal control are discussed, namely simple semivectorial bilevel optimal control problems and inverse multi-objective optimal control problems. The results presented in this paper depict that surrogates of bilevel programming problems which are constructed by interpreting implicit multipliers as explicit variables have to be investigated with great care when local minimizers are considered.

MSC:

49J20 Existence theories for optimal control problems involving partial differential equations
49J27 Existence theories for problems in abstract spaces
90C29 Multi-objective and goal programming
90C48 Programming in abstract spaces

Citations:

Zbl 1266.90160
Full Text: DOI

References:

[1] Bard, JF., Practical bilevel optimization: algorithms and applications (1998), Dordrecht: Kluwer Academic, Dordrecht · Zbl 0943.90078
[2] Dempe, S., Foundations of bilevel programming (2002), Dordrecht: Kluwer Academic, Dordrecht · Zbl 1038.90097
[3] Shimizu, K.; Ishizuka, Y.; Bard, JF., Nondifferentiable and two-level mathematical programming (1997), Dordrecht: Kluwer Academic, Dordrecht · Zbl 0878.90088
[4] Bonnel, H., Optimality conditions for the semivectorial bilevel optimization problem, Pac J Optim, 2, 3, 447-468 (2006) · Zbl 1124.90028
[5] Bonnel, H.; Morgan, J., Semivectorial bilevel optimization problem: penalty approach, J Optim Theory Appl, 131, 3, 365-382 (2006) · Zbl 1205.90258
[6] Ehrgott, M., Multicriteria optimization (2005), Berlin: Springer, Berlin · Zbl 1132.90001
[7] Jahn, J., Vector optimization (2004), Berlin: Springer, Berlin · Zbl 0577.90078
[8] Alves, MJ; Antunes, CH., A semivectorial bilevel programming approach to optimize electricity dynamic time-of-use retail pricing, Comput Oper Res, 92, 130-144 (2018) · Zbl 1391.90542
[9] Dempe, S.; Gadhi, N.; Zemkoho, AB., New optimality conditions for the semivectorial bilevel optimization problem, J Optim Theory Appl, 157, 1, 54-74 (2013) · Zbl 1266.90160
[10] Liu, B.; Wan, Z.; Chen, J., Optimality conditions for pessimistic semivectorial bilevel programming problems, J Inequal Appl, 41, 1, 1-26 (2014) · Zbl 1332.90212
[11] Zemkoho, AB., Solving ill-posed bilevel programs, Set-Valued Var Anal, 24, 3, 423-448 (2016) · Zbl 1362.90346
[12] Bonnel, H, Morgan, J.Optimality conditions for semivectorial bilevel convex optimal control problems. In: Computational and analytical mathematics. New York: Springer; 2013. p. 45-78. · Zbl 1283.49042
[13] Bonnel, H.; Morgan, M., Semivectorial bilevel convex optimal control problems: existence results, SIAM J Control Optim, 50, 6, 3224-3241 (2012) · Zbl 1279.49002
[14] Ren, A.; Wang, Y., A novel penalty function method for semivectorial bilevel programming problem, Appl Math Model, 40, 1, 135-149 (2016) · Zbl 1443.90058
[15] Zheng, Y.; Wan, Z., A solution method for semivectorial bilevel programming problem via penalty method, J Appl Math Comput, 37, 1, 207-219 (2011) · Zbl 1297.90131
[16] Zemkoho, AB.Bilevel programming: reformulations, regularity, and stationarity [PhD thesis]. Technische Universität Bergakademie Freiberg; 2012.
[17] Huy, NQ; Mordukhovich, BS; Yao, JC., Coderivatives of frontier and solution maps in parametric multiobjective optimization, Taiwanese J Math, 12, 8, 2083-2111 (2008) · Zbl 1194.90082
[18] Mehlitz, P., On the sequential normal compactness condition and its restrictiveness in selected function spaces, Set-Valued Var Anal, 1-20 (2018) · Zbl 1428.49019 · doi:10.1007/s11228-018-0475-6
[19] Aussel, D.; Svensson, A., Is pessimistic bilevel programming a special case of a mathematical program with complementarity constraints?, J Optim Theory Appl, 181, 2, 504-520 (2019) · Zbl 1414.90324
[20] Dempe, S.; Dutta, J., Is bilevel programming a special case of a mathematical program with complementarity constraints?, Math Program Ser A, 131, 37-48 (2010) · Zbl 1235.90145
[21] Mehlitz, P.Contributions to complementarity and bilevel programming in Banach spaces [PhD thesis]. Technische Universität Bergakademie Freiberg; 2017. · Zbl 1421.90141
[22] Bolintineanu, S., Necessary conditions for nonlinear suboptimization over the weakly-efficient set, J Optim Theory Appl, 78, 3, 579-598 (1993) · Zbl 0794.90049
[23] Bolintineanu, S., Optimality conditions for minimization over the (weakly or properly) efficient set, J Math Anal Appl, 173, 2, 523-541 (1993) · Zbl 0796.90044
[24] Horst, R.; Thoai, NV., Maximizing a concave function over the efficient or weakly-efficient set, Eur J Oper Res, 117, 2, 239-252 (1999) · Zbl 0998.90074
[25] Bank, B.; Guddat, J.; Klatte, D., Non-linear parametric optimization (1983), Basel: Birkhäuser, Basel · Zbl 0502.49002
[26] Robinson, SM., Stability theory for systems of inequalities. Part II: Differentiable nonlinear systems, SIAM J Numer Anal, 13, 4, 497-513 (1976) · Zbl 0347.90050
[27] Zowe, J.; Kurcyusz, S., Regularity and stability for the mathematical programming problem in Banach spaces, Appl Math Optim, 5, 1, 49-62 (1979) · Zbl 0401.90104
[28] Bonnans, JF; Shapiro, A., Perturbation analysis of optimization problems (2000), New York: Springer, New York · Zbl 0966.49001
[29] Dempe, S.; Harder, F.; Mehlitz, P., Solving inverse optimal control problems via value functions to global optimality, J Global Optim, 74, 2, 297-325 (2019) · Zbl 1417.49047
[30] Harder, F.; Wachsmuth, G., Optimality conditions for a class of inverse optimal control problems with partial differential equations, Optimization, 68, 2-3, 615-643 (2019) · Zbl 1418.49025
[31] Holler, G.; Kunisch, K.; Barnard, RC., A bilevel approach for parameter learning in inverse problems, Inverse Probl, 34, 11, 1-28 (2018) · Zbl 1400.49046
[32] Hinze, M.; Pinnau, R.; Ulbrich, M., Optimization with PDE constraints (2009), Heidelberg: Springer, Heidelberg · Zbl 1167.49001
[33] Tröltzsch, F., Optimal control of partial differential equations (2009), Wiesbaden: Vieweg, Wiesbaden · Zbl 1320.49001
[34] Stadler, G., Elliptic optimal control problems with L1-control cost and applications for the placement of control devices, Comput Optim Appl, 44, 159-181 (2007) · Zbl 1185.49031
[35] Peitz, S.; Dellnitz, M., A survey of recent trends in multiobjective optimal control – surrogate models, feedback control and objective reduction, Math Comput Appl, 23, 2, 1-33 (2018)
[36] Bonnel, H.; Kaya, CY., Optimization over the efficient set of multi-objective convex optimal control problems, J Optim Theory Appl, 147, 1, 93-112 (2010) · Zbl 1205.49041
[37] Dempe, S, Dinh, N, Dutta, J.Optimality conditions for a simple convex bilevel programming problem. In: Burachik RS, Yao JC, editors. Variational analysis and generalized differentiation in optimization and control. Chap. 7. New York: Springer; 2010. p. 149-161. (Springer optimization and its applications; 47). · Zbl 1203.49002
[38] Franke, S.; Mehlitz, P.; Pilecka, M., Optimality conditions for the simple convex bilevel programming problem in Banach spaces, Optimization, 67, 2, 237-268 (2018) · Zbl 1422.90035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.