×

On optimal \(C^{1 , \alpha}\) estimates for \(p ( x )\)-Laplace type equations. (English) Zbl 1453.35093

Let \(\Omega\subset \mathbb{R}^n\) be a bounded domain, and let \(p,q\in C(\overline{\Omega})\) with \(\inf_{\overline{\Omega}}p>1\) and \(\inf_{\overline{\Omega}}q>n\). The authors consider the following \(p(x)\)-Laplace elliptic equation \[ \text{div}(a(x)|\nabla u|^{p(x)-2}\nabla u)=\text{div}\mathbf{h}(x)+f(x), \quad\text{in } \Omega,\tag{1}\] where \(f\in L^{q(\cdot)}(\Omega)\) and \(a:\overline{\Omega}\rightarrow \mathbb{R}\), \(\mathbf{h}:\overline{\Omega}\rightarrow \mathbb{R}^n\) satisfy the following conditions
1) there exist \(\lambda, \Lambda>0\) such that \(\lambda \leq a(x)\leq \Lambda\) for all \(x\in \overline{\Omega}\),
2) there exist \(C_1,C_2>0\) and \(\sigma_1,\sigma_2\in (0,1)\) such that \(|a(x)-a(y)|+|p(x)-p(y)|\leq C_1|x-y|^{\sigma_1}\) and \(|\mathbf{h}(x)-\mathbf{h}(y)|\leq |x-y|^{\sigma_2}\) for all \(x,y\in \overline{\Omega}\),
and establish an optimal local \(C^{1,\alpha}\)-estimate for the local weak solutions of equation \((1)\).

MSC:

35J62 Quasilinear elliptic equations
35J70 Degenerate elliptic equations
Full Text: DOI

References:

[1] Araújo, D. J.; Teixeira, E. V.; Urbano, J. M., A proof of the \(C^{1 , p^\prime}\) conjecture in the plane, Adv. Math., 316, 541-553 (2017) · Zbl 1379.35144
[2] Araújo, D. J.; Teixeira, E. V.; Urbano, J. M., Towards the \(C^{p^\prime}\)-regularity conjecture in higher dimensions, Int. Math. Res. Not. IMRN, 20, 6481-6495 (2018) · Zbl 1407.35041
[3] Araújo, D. J.; Zhang, L., Optimal \(C^{1 , \alpha}\) estimates for a class of elliptic quasilinear equations, Commun. Contemp. Math. (2019), (in press)
[4] Balci, A. K.; Diening, L.; Weimar, M., Higher order Calderón-Zygmund estimates for the \(p\)-Laplace equation, J. Differential Equations, 268, 2, 590-635 (2020) · Zbl 1435.35182
[5] Brasco, L.; Santambrogio, F., A sharp estimate à la Calderón-Zygmund for the \(p\)-Laplacian, Commun. Contemp. Math., 20, 3 (2018), 24 pp · Zbl 1390.49045
[6] Caffarelli, L., Interior a priori estimates for solutions of fully nonlinear equations, Ann. Math., 130, 2, 189-213 (1989) · Zbl 0692.35017
[7] Coscia, A.; Mingione, G., Hölder continuity of the gradient of \(p ( x )\)-harmonic mappings, C. R. Acad. Sci. Paris I, 328, 4, 363-368 (1999) · Zbl 0920.49020
[8] da Silva, J. V., Geometric \(C^{1 + \alpha}\) regularity estimates for nonlinear evolution models, Nonlinear Anal., 184, 95-115 (2019) · Zbl 1418.35056
[9] DiBenedetto, E., \( C^{1 + \alpha}\) Local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7, 827-850 (1983) · Zbl 0539.35027
[10] Diening, L.; Harjulehto, P.; Hästö, P.; Růžička, M., (Lebesgue and Sobolev Spaces with Variable Exponents. Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017 (2011), Springer: Springer Heidelberg) · Zbl 1222.46002
[11] Duzaar, F.; Mingione, G., Gradient continuity estimates, Calc. Var. Partial Differential Equations, 39, 379-418 (2010) · Zbl 1204.35100
[12] Fan, X., Global \(C^{1 , \alpha}\) regularity for variable exponent elliptic equations in divergence form, J. Differential Equations, 235, 2, 397-417 (2007) · Zbl 1143.35040
[13] Fan, X.; Zhang, Q., Existence of solutions for \(p ( x )\)-Laplacian Dirichlet problem, Nonlinear Anal., 52, 8, 1843-1852 (2003) · Zbl 1146.35353
[14] Fan, X.; Zhao, D., A class of De Giorgi type and Hölder continuity, Nonlinear Anal., 36, 3, 295-318 (1999) · Zbl 0927.46022
[15] Fan, X.; Zhao, D., On the spaces \(L^{p ( x )} ( \Omega )\) and \(W^{m , p ( x )} ( \Omega )\), J. Math. Anal. Appl., 263, 424-446 (2001) · Zbl 1028.46041
[16] Haque, S., A note on the optimal boundary regularity for the planar generalized \(p\)-Poisson equation, Nonlinear Anal., 175, 133-156 (2018) · Zbl 1398.35057
[17] Harjulehto, P.; Hästö, P.; Lê, Ú.; Nuortio, M., Overview of differential equations with non-standard growth, Nonlinear Anal., 72, 12, 4551-4574 (2010) · Zbl 1188.35072
[18] Kováčik, O.; Rákosník, J., On spaces \(L^{p ( x )}\) and \(W^{k , p ( x )}\), Czechoslovak Math. J., 41, 592-618 (1991) · Zbl 0784.46029
[19] Kuusi, T.; Mingione, G., Universal potential estimates, J. Funct. Anal., 262, 10, 4205-4269 (2012) · Zbl 1252.35097
[20] Lewis, J., Regularity of the derivatives of solutions to certain degenerate elliptic equations, Indiana Univ. Math. J., 32, 6, 849-858 (1983) · Zbl 0554.35048
[21] Lindgren, E.; Lindqvist, P., Regularity of the \(p\)-Poisson equation in the plane, J. Anal. Math., 132, 217-228 (2017) · Zbl 1379.31006
[22] Musielak, J., Orlicz Spaces and Modular Spaces (1983), Springer-Verlag: Springer-Verlag Berlin · Zbl 0557.46020
[23] Ragusa, M. A.; Tachikawa, A., Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal., 9, 1, 710-728 (2020) · Zbl 1420.35145
[24] Rajagopal, K. R.; Růžička, M., Mathematical modeling of electrorheological materials, Contin. Mech. Thermodyn., 13, 59-78 (2001) · Zbl 0971.76100
[25] Růžička, M., (Electrorheological Fluids: Modeling and Mathematical Theory. Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, vol. 1748 (2000), Springer: Springer Berlin) · Zbl 0968.76531
[26] Rădulescu, V. D., Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Anal., 121, 336-369 (2015) · Zbl 1321.35030
[27] Rădulescu, V. D., Isotropic and anistropic double-phase problems: old and new, Opuscula Math., 39, 2, 259-279 (2019) · Zbl 1437.35315
[28] Rădulescu, V. D.; Repovs̆, D. D., (Partial Differential Equations with Variable Exponents. Variational Methods and Qualitative Analysis. Partial Differential Equations with Variable Exponents. Variational Methods and Qualitative Analysis, Monographs and Research Notes in Mathematics (2015), CRC Press: CRC Press Boca Raton, FL) · Zbl 1343.35003
[29] Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51, 126-150 (1984) · Zbl 0488.35017
[30] Winkert, P.; Zacher, R., A priori bounds for weak solutions to elliptic equations with nonstandard growth, Discrete Contin. Dyn. Syst. Ser. S, 5, 4, 865-878 (2012) · Zbl 1261.35061
[31] Yu, C.; Ri, D., Global \(L^\infty \)-estimates and Hölder continuity of weak solutions to elliptic equations with the general nonstandard growth conditions, Nonlinear Anal., 156, 144-166 (2017) · Zbl 1375.35127
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.