×

Modelling large deformation behaviour under loading-unloading of semicrystalline polymers: application to a high density polyethylene. (English) Zbl 1452.74023

Summary: In this work, the large deformation behaviour under monotonic loading and unloading of a high density polyethylene (HDPE) is studied. To analyze the nonlinear time-dependent response of the material, mechanical tests were conducted at room temperature under constant true strain rates and stress relaxation conditions. A physically-based inelastic model written under finite strain formulation is proposed to describe the mechanical behaviour of HDPE. In the model, the inelastic mechanisms involve two parallel elements: a visco-hyperelastic network resistance acting in parallel with a viscoelastic – viscoplastic intermolecular resistance where the amorphous and crystalline phases are explicitly taken into consideration. The semicrystalline polymer is considered as a two-phase composite. The influence of the crystallinity on the loading and unloading behaviour is investigated. Numerical results are compared to experimental data. It is shown that the model is able to accurately reproduce the experimental observations corresponding to monotonic loading, unloading and stress relaxation behaviours at different strain levels. Finally, the model capabilities to capture cyclic loading-unloading behaviour up to large strains are discussed. To demonstrate the improved modelling capabilities, simulations are also performed using the original model of Boyce et al. [M. C. Boyce, S. Socrate and P. G. Llana, “Constitutive model for the finite deformation stress-strain behavior of poly(ethylene terephthalate) above the glass transition”, Polymer 41, No. 6, 2183–2201 (2000; doi:10.1016/S0032-3861(99)00406-1)] modified by S. Ahzi et al. [“Modeling of deformation behavior and strain-induced crystallization in poly(ethylene terephthalate) above the glass transition temperature”, Mech. Mat. 35, No. 12, 1139–1148 (2003; doi:10.1016/S0167-6636(03)00004-8)].

MSC:

74C20 Large-strain, rate-dependent theories of plasticity
74E15 Crystalline structure
74D10 Nonlinear constitutive equations for materials with memory
74E30 Composite and mixture properties
74-05 Experimental work for problems pertaining to mechanics of deformable solids
Full Text: DOI

References:

[1] Ahzi, S.; Makradi, A.; Gregory, R. V.; Edie, D. D.: Modeling of deformation behavior and strain-induced crystallization in \(poly(ethylene terephthalate)\) above the Glass transition temperature, Mechanics of materials 35, 1139-1148 (2003)
[2] Ames, N. M.; Srivastava, V.; Chester, S. A.; Anand, L.: A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: Applications, International journal of plasticity 25, 1495-1539 (2009) · Zbl 1272.74083
[3] Anand, L.; Gurtin, M. E.: A theory of amorphous solids undergoing large deformations, with application to polymeric glasses, International journal of solids and structures 40, 1465-1487 (2003) · Zbl 1045.74016 · doi:10.1016/S0020-7683(02)00651-0
[4] Anand, L.; Ames, N. M.: On modeling the micro-indentation response of an amorphous polymer, International journal of plasticity 22, 1123-1170 (2006) · Zbl 1176.74038 · doi:10.1016/j.ijplas.2005.07.006
[5] Anand, L.; Ames, N. M.; Srivastava, V.; Chester, S. A.: A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part I: Formulation, International journal of plasticity 25, 1474-1494 (2009) · Zbl 1165.74011 · doi:10.1016/j.ijplas.2008.11.004
[6] Argon, A. S.: A theory for the low temperature plastic deformation of glassy polymers, Philosophical magazine 28, 839-865 (1973)
[7] Arruda, E. M.; Boyce, M. C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, Journal of the mechanics and physics of solids 41, 389-412 (1993) · Zbl 1355.74020
[8] Arruda, E. M.; Boyce, M. C.; Jayachandran, R.: Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers, Mechanics of materials 19, 193-212 (1995)
[9] Ben Hadj Hamouda, H.; Laiarinandrasana, L.; Piques, R.: Viscoplastic behaviour of a medium density polyethylene (MDPE): constitutive equations based on double nonlinear deformation model, International journal of plasticity 23, 1307-1327 (2007) · Zbl 1134.74301 · doi:10.1016/j.ijplas.2006.11.007
[10] Bergstrom, J. S.; Boyce, M. C.: Constitutive modeling of the large strain time-dependent behavior of elastomers, Journal of the mechanics and physics of solids 46, 931-954 (1998) · Zbl 1056.74500 · doi:10.1016/S0022-5096(97)00075-6
[11] Bodner, S. R.; Partom, Y.: Constitutive equations for elastic – viscoplastic strain-hardening materials, Journal of applied mechanics 42, 385-389 (1975)
[12] Boyce, M. C.; Parks, D. M.; Argon, A. S.: Large inelastic deformation of glassy polymers. Part I: Rate dependent constitutive model., Mechanics of materials 7, 15-33 (1988)
[13] Boyce, M. C.; Socrate, S.; Llana, P. G.: Constitutive model for the finite deformation stress – strain behavior of \(poly(ethylene terephthalate)\) above the Glass transition, Polymer 41, 2183-2201 (2000)
[14] Choy, C. L.; Leung, W. P.: Elastic moduli of ultradrawn polyethylene, Journal of polymer science. Part B: polymer physics 23, 1759-1780 (1985)
[15] Cohen, A.: A Padé approximant to the inverse Langevin function, Rheologica acta 30, 270-273 (1991)
[16] Colak, O. U.: Modeling deformation behavior of polymers with viscoplasticity theory based on overstress, International journal of plasticity 21, 145-160 (2005) · Zbl 1112.74335 · doi:10.1016/j.ijplas.2004.04.004
[17] Colak, O. U.; Dusunceli, N.: Modeling viscoelastic and viscoplastic behavior of high density polyethylene (HDPE), Journal of engineering materials and technology 128, 572-578 (2006)
[18] Doi, M.; Edwards, S. F.: The theory of polymer dynamics, (1986)
[19] Drozdov, A. D.; Gupta, R. K.: Constitutive equations of finite viscoplasticity of semicrystalline polymers, International journal of solids and structures 40, 6217-6243 (2003) · Zbl 1083.74008 · doi:10.1016/S0020-7683(03)00414-1
[20] Drozdov, A. D.; Christiansen, J. C.: Cyclic elastoplasticity of solid polymers, Computational materials science 42, 27-35 (2008)
[21] Dusunceli, N.; Colak, O. U.: High density polyethylene (HDPE): experiments and modeling, Mechanics of time dependent materials 10, 331-345 (2006)
[22] Dusunceli, N.; Colak, O. U.: Modelling effects of degree of crystallinity on mechanical behavior of semicrystalline polymers, International journal of plasticity 24, 1224-1242 (2008) · Zbl 1419.74081
[23] Eyring, H.: Viscosity, plasticity, and diffusion as examples of absolute reaction rates, Journal of chemical physics 4, 283-291 (1936)
[24] Ghorbel, E.: A viscoplastic constitutive model for polymeric materials, International journal of plasticity 24, 2032-2058 (2008) · Zbl 1148.74010 · doi:10.1016/j.ijplas.2008.01.003
[25] G’sell, C.; Dahoun, A.; Favier, V.; Hiver, J. M.; Philippe, M. J.; Canova, G. R.: Microstructure transformation and stress – strain behavior of isotactic polypropylene under large plastic deformation, Polymer engineering and science 37, 1702-1711 (1997)
[26] G’sell, C.; Hiver, J. M.; Dahoun, A.: Experimental characterization of deformation damage in solid polymers under tension, and its interrelation with necking, International journal of solids and structures 39, 3857-3872 (2002)
[27] Hasanpour, S.; Ziaei-Rad, S.; Mahzoon, M.: A large deformation framework for compressible viscoelastic materials: constitutive equations and finite element implementation, International journal of plasticity 25, 1154-1176 (2009) · Zbl 1161.74015 · doi:10.1016/j.ijplas.2008.06.012
[28] Haward, R. N.; Thackray, G.: The use of a mathematical model to describe isothermal stress – strain curves in glassy thermoplastics, Proceedings of the royal society of London 302, 453-472 (1968)
[29] Khan, A.; Zhang, H.: Finite deformation of a polymer: experiments and modeling, International journal of plasticity 17, 1167-1188 (2001) · Zbl 1097.74501 · doi:10.1016/S0749-6419(00)00073-5
[30] Khan, A. S.; Lopez-Pamies, O.; Kazmi, R.: Thermo-mechanical large deformation response and constitutive modeling of viscoelastic polymers over a wide range of strain rates and temperatures, International journal of plasticity 22, 581-601 (2006) · Zbl 1190.74006 · doi:10.1016/j.ijplas.2005.08.001
[31] Khan, F.; Krempl, E.: Amorphous and semicrystalline solid polymers: experimental and modeling studies of their inelastic deformation behaviors, Journal of engineering materials and technology 128, 64-72 (2006)
[32] Krempl, E.; Mcmahon, J. J.; Yao, D.: Viscoplasticity based on overstress with a differential growth law for the equilibrium stress, Mechanics of materials 5, 35-48 (1984)
[33] Krempl, E.; Ho, K.: An overstress model for solid polymer deformation behavior applied to nylon 66, Astm stp 1357, 118-137 (2000)
[34] Laiarinandrasana, L.; Besson, J.; Lafarge, M.; Hochstetter, G.: Temperature dependent mechanical behaviour of PVDF: experiments and numerical modelling, International journal of plasticity 25, 1301-1324 (2009) · Zbl 1202.74007 · doi:10.1016/j.ijplas.2008.09.008
[35] Lee, B. J.; Parks, D. M.; Ahzi, S.: Micromechanical modeling of large plastic deformation and texture evolution in semi-crystalline polymers, Journal of the mechanics and physics of solids 41, 1651-1687 (1993) · Zbl 0783.73058 · doi:10.1016/0022-5096(93)90018-B
[36] Lee, B. J.; Argon, A. S.; Parks, D. M.; Ahzi, S.; Bartczak, Z.: Simulation of large strain plastic deformation and texture evolution in high density polyethylene, Polymer 34, 3555-3575 (1993)
[37] Lee, E. H.: Elastic – plastic deformation at finite strains, Journal of applied mechanics 36, 1-6 (1969) · Zbl 0179.55603 · doi:10.1115/1.3564580
[38] Makradi, A.; Ahzi, S.; Gregory, R. V.; Edie, D. D.: A two-phase self-consistent model for the deformation and phase transformation behavior of polymers above the Glass transition temperature: application to PET, International journal of plasticity 21, 741-758 (2005) · Zbl 1112.74453 · doi:10.1016/j.ijplas.2004.04.012
[39] Nikolov, S.; Doghri, I.: A micro/macro constitutive model for the small-deformation behavior of polyethylene, Polymer 41, 1883-1891 (2000)
[40] Nikolov, S.; Doghri, I.; Pierard, O.; Zealouk, L.; Goldberg, A.: Multi-scale constitutive modeling for the small deformations of semi-crystalline polymers, Journal of the mechanics and physics of solids 50, 2275-2302 (2002) · Zbl 1100.74616 · doi:10.1016/S0022-5096(02)00036-4
[41] Popelar, C. F.; Popelar, C. H.; Kenner, V. H.: Viscoelastic material characterization and modeling for polyethylene, Polymer engineering and science 30, 577-586 (1990)
[42] Regrain, C.; Laiarinandrasana, L.; Toillon, S.; Saï, K.: Multi-mechanism models for semi-crystalline polymer: constitutive relations and finite element implementation, International journal of plasticity 25, 1253-1279 (2009) · Zbl 1221.74016 · doi:10.1016/j.ijplas.2008.09.010
[43] Schapery, R.A., 1983. Correspondence Principles and a Generalized J Integral for Large Deformation and Fracture Analysis of Viscoelastic Media. Texas A&M University Report MM 4665-83-7, College Station, TX.
[44] Van Dommelen, J. A. W.; Parks, D. M.; Boyce, M. C.; Brekelmans, W. A. M.; Baaijens, F. P. T.: Micromechanical modeling of the elasto-viscoplastic behavior of semi-crystalline polymers, Journal of the mechanics and physics of solids 51, 519-541 (2003) · Zbl 1100.74534 · doi:10.1016/S0022-5096(02)00063-7
[45] Wu, P. D.; Van Der Giessen, E.: On neck propagation in amorphous glassy polymers under plane strain tension, International journal of plasticity 11, 211-235 (1995) · Zbl 0823.73023 · doi:10.1016/0749-6419(94)00043-3
[46] Wunderlich, B.: Macromolecular physics. Crystal melting, Macromolecular physics. Crystal melting 3 (1980)
[47] Zaïri, F.; Woznica, K.; Naït-Abdelaziz, M.: Phenomenological nonlinear modelling of glassy polymers, Comptes rendus mecanique 333, 359-364 (2005)
[48] Zaïri, F.; Naït-Abdelaziz, M.; Woznica, K.; Gloaguen, J. M.: Constitutive equations for the viscoplastic-damage behaviour of a rubber-modified polymer, European journal of mechanics A/solids 24, 169-182 (2005) · Zbl 1064.74506 · doi:10.1016/j.euromechsol.2004.11.003
[49] Zaïri, F.; Naït-Abdelaziz, M.; Woznica, K.; Gloaguen, J. M.: Elasto-viscoplastic constitutive equations for the description of glassy polymers behavior at constant strain rate, Journal of engineering materials and technology 129, 29-35 (2007)
[50] Zaïri, F.; Naït-Abdelaziz, M.; Gloaguen, J. M.; Lefebvre, J. M.: Modelling of the elasto-viscoplastic damage behaviour of glassy polymers, International journal of plasticity 24, 945-965 (2008) · Zbl 1135.74043 · doi:10.1016/j.ijplas.2007.08.001
[51] Zhang, C.; Moore, I. D.: Nonlinear mechanical response of high density polyethylene. Part II: Uniaxial constitutive modeling, Polymer engineering and science 37, 413-420 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.