×

Best-case and worst-case sparsifiability of Boolean CSPs. (English) Zbl 1452.68176

Summary: We continue the investigation of polynomial-time sparsification for NP-complete Boolean Constraint Satisfaction Problems (CSPs). The goal in sparsification is to reduce the number of constraints in a problem instance without changing the answer, such that a bound on the number of resulting constraints can be given in terms of the number of variables \(n\). We investigate how the worst-case sparsification size depends on the types of constraints allowed in the problem formulation – the constraint language – and identify constraint languages giving the best-possible and worst-possible behavior for worst-case sparsifiability. Two algorithmic results are presented. The first result essentially shows that for any arity \(k\), the only constraint type for which no nontrivial sparsification is possible has exactly one falsifying assignment, and corresponds to logical OR (up to negations). Our second result concerns linear sparsification, that is, a reduction to an equivalent instance with \(O(n)\) constraints. Using linear algebra over rings of integers modulo prime powers, we give an elegant necessary and sufficient condition for a constraint type to be captured by a degree-1 polynomial over such a ring, which yields linear sparsifications. The combination of these algorithmic results allows us to prove two characterizations that capture the optimal sparsification sizes for a range of Boolean CSPs. For NP-complete Boolean CSPs whose constraints are symmetric (the satisfaction depends only on the number of 1 values in the assignment, not on their positions), we give a complete characterization of which constraint languages allow for a linear sparsification. For Boolean CSPs in which every constraint has arity at most three, we characterize the optimal size of sparsifications in terms of the largest OR that can be expressed by the constraint language.

MSC:

68T20 Problem solving in the context of artificial intelligence (heuristics, search strategies, etc.)
68Q17 Computational difficulty of problems (lower bounds, completeness, difficulty of approximation, etc.)
68Q27 Parameterized complexity, tractability and kernelization
68R07 Computational aspects of satisfiability

References:

[1] Bodlaender, HL; Jansen, BMP; Kratsch, S., Kernelization lower bounds by cross-composition, SIAM J. Discrete Math., 28, 1, 277-305 (2014) · Zbl 1295.05222 · doi:10.1137/120880240
[2] Bodlaender, HL; Thomassé, S.; Yeo, A., Kernel bounds for disjoint cycles and disjoint paths, Theor. Comput. Sci., 412, 35, 4570-4578 (2011) · Zbl 1221.68099 · doi:10.1016/j.tcs.2011.04.039
[3] Bulatov, A.; Jeavons, P.; Krokhin, A., Classifying the complexity of constraints using finite algebras, SIAM J. Comput., 34, 3, 720-742 (2005) · Zbl 1071.08002 · doi:10.1137/S0097539700376676
[4] Chen, HA, A rendezvous of logic, complexity, and algebra, ACM Comput. Surv. (2009) · doi:10.1145/1189056.1189076
[5] Cygan, M.; Fomin, FV; Kowalik, L.; Lokshtanov, D.; Marx, D.; Pilipczuk, M.; Pilipczuk, M.; Saurabh, S., Parameterized Algorithms (2015), Berlin: Springer, Berlin · Zbl 1334.90001
[6] Dell, H., Marx, D.: Kernelization of packing problems. In: Proceedings of 23rd SODA, pp. 68-81 (2012). 10.1137/1.9781611973099.6 · Zbl 1421.68072
[7] Dell, H.; van Melkebeek, D., Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses, J. ACM, 61, 4, 23:1-23:27 (2014) · Zbl 1321.68274 · doi:10.1145/2629620
[8] Downey, RG; Fellows, MR, Fundamentals of Parameterized Complexity. Texts in Computer Science (2013), Berlim: Springer, Berlim · Zbl 1358.68006
[9] Drucker, A., New limits to classical and quantum instance compression, SIAM J. Comput., 44, 5, 1443-1479 (2015) · Zbl 1330.68092 · doi:10.1137/130927115
[10] Gockenbach, M., Finite-Dimensional Linear Algebra. Discrete Mathematics and Its Applications (2011), Abingdon: Taylor & Francis, Abingdon
[11] Jansen, BMP, On sparsification for computing treewidth, Algorithmica, 71, 3, 605-635 (2015) · Zbl 1312.68103 · doi:10.1007/s00453-014-9924-2
[12] Jansen, B.M.P., Pieterse, A.: Optimal sparsification for some binary CSPs using low-degree polynomials. In: Proceedings of 41st MFCS, pp. 71:1-71:14 (2016). 10.4230/LIPIcs.MFCS.2016.71 · Zbl 1398.68244
[13] Jansen, B.M.P., Pieterse, A.: Optimal data reduction for graph coloring using low-degree polynomials. In: Proceedings of 12th IPEC, pp. 22:1-22:12 (2017). 10.4230/LIPIcs.IPEC.2017.22 · Zbl 1443.68132
[14] Jansen, BMP; Pieterse, A., Sparsification upper and lower bounds for graph problems and not-all-equal SAT, Algorithmica, 79, 1, 3-28 (2017) · Zbl 1372.68129 · doi:10.1007/s00453-016-0189-9
[15] Jansen, B.M.P., Pieterse, A.: Optimal sparsification for some binary CSPs using low-degree polynomials. CoRR abs/1606.03233 (2018). arXiv:1606.03233v2 · Zbl 1495.68100
[16] Kannan, R.; Bachem, A., Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix, SIAM J. Comput., 8, 4, 499-507 (1979) · Zbl 0446.65015 · doi:10.1137/0208040
[17] Kratsch, S.; Philip, G.; Ray, S., Point line cover: the easy kernel is essentially tight, ACM Trans. Algorithms, 12, 3, 40:1-40:16 (2016) · Zbl 1423.68547 · doi:10.1145/2832912
[18] Lagerkvist, V., Weak bases of Boolean co-clones, Inf. Process. Lett., 114, 9, 462-468 (2014) · Zbl 1296.68080 · doi:10.1016/j.ipl.2014.03.011
[19] Lagerkvist, V., Wahlström, M.: Kernelization of constraint satisfaction problems: a study through universal algebra. In: Proceedings of 23rd CP, pp. 157-171 (2017). 10.1007/978-3-319-66158-2_11
[20] Lagerkvist, V., Wahlström, M.: Kernelization of constraint satisfaction problems: a study through universal algebra. CoRR abs/1706.05941 (2017). arXiv:1706.05941 · Zbl 1387.08001
[21] Lagerkvist, V., Wahlström, M.: Which NP-hard SAT and CSP problems admit exponentially improved algorithms? CoRR abs/1801.09488 (2018). arXiv:1801.09488v1
[22] Lokshtanov, D., Misra, N., Saurabh, S.: Kernelization—preprocessing with a guarantee. In: The Multivariate Algorithmic Revolution and Beyond, pp. 129-161 (2012). 10.1007/978-3-642-30891-8_10 · Zbl 1358.68141
[23] Lovász, L.: Chromatic number of hypergraphs and linear algebra. In: Studia Scientiarum Mathematicarum Hungarica 11, pp. 113-114 (1976). http://real-j.mtak.hu/5461/ · Zbl 0425.05026
[24] Nordh, G., Zanuttini, B.: Frozen Boolean partial co-clones. In: Proceedings of 39th International Symposium on Multiple-Valued Logic, pp. 120-125. IEEE Computer Society (2009). 10.1109/ISMVL.2009.10
[25] Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of 10th STOC, pp. 216-226 (1978). 10.1145/800133.804350 · Zbl 1282.68143
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.