×

Transformed snapshot interpolation with high resolution transforms. (English) Zbl 1452.65297

Summary: In the last few years, several methods have been developed to deal with jump singularities in parametric or stochastic hyperbolic PDEs. They typically use some alignment of the jump-sets in physical space before performing well-established reduced order modeling techniques such as reduced basis methods, proper orthogonal decomposition, or simply interpolation. In the current literature, the transforms are typically of low resolution in space, mostly low order polynomials, Fourier modes, or constant shifts. In this paper, we discuss higher resolution transforms in one of the recent methods, the transformed snapshot interpolation. We introduce a new discretization of the transforms with an appropriate behavior near singularities and consider their numerical computation via an optimization procedure.

MSC:

65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
41A46 Approximation by arbitrary nonlinear expressions; widths and entropy
41A25 Rate of convergence, degree of approximation
35L67 Shocks and singularities for hyperbolic equations

References:

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, TensorFlow: Large-scale Machine Learning on Heterogeneous Systems, https://www.tensorflow.org/, 2015.
[2] R. Abgrall, D. Amsallem, and R. Crisovan, Robust model reduction by \(L_1\)-norm minimization and approximation via dictionaries: Application to nonlinear hyperbolic problems, Adv. Model. Simul. Eng. Sci., 3 (2016), https://doi.org/10.1186/s40323-015-0055-3.
[3] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II-a general-purpose object-oriented finite element library, ACM Trans. Math. Softw., 33 (2007), https://doi.org/10.1145/1268776.1268779. · Zbl 1365.65248
[4] P. Benner, S. Gugercin, and K. Willcox, A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev., 57 (2015), pp. 483-531, https://doi.org/10.1137/130932715. · Zbl 1339.37089
[5] J. Brunken, K. Smetana, and K. Urban, (parametrized) first order transport equations: Realization of optimally stable petrov-galerkin methods, SIAM J. Sci. Comput., 41 (2019), pp. A592-A621, https://doi.org/10.1137/18M1176269. · Zbl 1428.65077
[6] J. Burke, A. Lewis, and M. Overton, A robust gradient sampling algorithm for nonsmooth, nonconvex optimization, SIAM J. Optim., 15 (2005), pp. 751-779, https://doi.org/10.1137/030601296. · Zbl 1078.65048
[7] N. Cagniart, R. Crisovan, Y. Maday, and R. Abgrall, Model Order Reduction for Hyperbolic Problems: A New Framework, https://hal.archives-ouvertes.fr/hal-01583224/document, 2017.
[8] N. Cagniart, Y. Maday, and B. Stamm, Model order reduction for problems with large convection effects, in Contributions to Partial Differential Equations and Applications, B. N. Chetverushkin, W. Fitzgibbon, Y. Kuznetsov, P. Neittaanmäki, J. Periaux, and O. Pironneau, eds., Comput. Methods Appl. Sci. 47, Springer, New York, 2018, pp. 131-150. · Zbl 1416.35021
[9] Q.-Y. Chen, D. Gottlieb, and J. S. Hesthaven, Uncertainty analysis for the steady-state flows in a dual throat nozzle, J. Comput. Phys., 204 (2005), pp. 378-398, https://doi.org/10.1016/j.jcp.2004.10.019. · Zbl 1143.76430
[10] A. Cohen, Numerical Analysis of Wavelet Methods, JAI Press, Stamford, CT, 2003. · Zbl 1038.65151
[11] A. Cohen and R. DeVore, Approximation of high-dimensional parametric PDEs, Acta Numer., 24 (2015), pp. 1-159, https://doi.org/10.1017/S0962492915000033. · Zbl 1320.65016
[12] P. Constantine and G. Iaccarino, Reduced Order Models for Parameterized Hyperbolic Conservations Laws with Shock Reconstruction, Tech. report, Stanford Center for Turbulence Research Annual Research Briefs, 2012, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.727.9918&rep=rep1&type=pdf.
[13] W. Dahmen, Multiscale and wavelet methods for operator equations, in Multiscale Problems and Methods in Numerical Simulations, C. Canuto, ed., Springer, New York, 2003, https://doi.org/10.1007/978-3-540-39810-3_2. · Zbl 1036.65095
[14] W. Dahmen, How to best sample a solution manifold?, in Sampling Theory, a Renaissance: Compressive Sensing and Other Developments, G. E. Pfander, ed., Springer, New York, 2015, pp. 403-435, https://doi.org/10.1007/978-3-319-19749-4_11. · Zbl 1336.65188
[15] W. Dahmen, C. Plesken, and G. Welper, Double greedy algorithms: Reduced basis methods for transport dominated problems, ESAIM Math. Model. Numer. Anal., 48 (2014), pp. 623-663, https://doi.org/10.1051/m2an/2013103. · Zbl 1291.65339
[16] B. Després, G. Poëtte, and D. Lucor, Robust uncertainty propagation in systems of conservation laws with the entropy closure method, in Uncertainty Quantification in Computational Fluid Dynamics, Lect. Notes Comp. Sci. Eng. 92, Springer, New York, 2013, pp. 105-149, https://doi.org/10.1007/978-3-319-00885-1_3. · Zbl 1276.76072
[17] L. C. Evans, Partial Differential Equations, 2nd ed., Grad. Stud. Math., AMS, Providence, RI, 2010. · Zbl 1194.35001
[18] J.-F. Gerbeau and D. Lombardi, Reduced-Order Modeling Based on Approximated Lax Pairs, Tech. report, INRIA, 2012, http://arxiv.org/pdf/1211.4153v1. · Zbl 1333.35235
[19] J.-F. Gerbeau and D. Lombardi, Approximated lax pairs for the reduced order integration of nonlinear evolution equations, J. Comput. Phys., 265 (2014), pp. 246-269, https://doi.org/10.1016/j.jcp.2014.01.047. · Zbl 1349.65548
[20] B. Haasdonk and M. Ohlberger, Reduced basis method for explicit finite volume approximations of nonlinear conservation laws, in Procceedings of the 12th International Conference on Hyperbolic Problems: Theory, Numerics, Application, College Park, MD, 2008. · Zbl 1407.76084
[21] B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations of parametrized linear evolution equations, ESAIM Math. Model. Numer. Anal., 42 (2008), pp. 277-302, https://doi.org/10.1051/m2an:2008001. · Zbl 1388.76177
[22] J. S. Hesthaven, G. Rozza, and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations, Springer, New York, 2015. · Zbl 1329.65203
[23] A. Iollo and D. Lombardi, Advection modes by optimal mass transfer, Phys. Rev. E, 89 (2014), 022923, https://doi.org/10.1103/PhysRevE.89.022923.
[24] S. Jin, D. Xiu, and X. Zhu, A well-balanced stochastic galerkin method for scalar hyperbolic balance laws with random inputs, J. Sci. Comput., 67 (2016), pp. 1198-1218, https://doi.org/10.1007/s10915-015-0124-2. · Zbl 1342.65010
[25] K. C. Kiwiel, Methods of Descent for Nondifferentiable Optimization, Lecture Notes in Math. 1133, Springer-Verlag, Berlin, 1985. · Zbl 0561.90059
[26] Q. Li, J.-G. Liu, and R. Shu, Sensitivity Analysis of Burgers’ Equation with Discontinuous Shocks, https://arxiv.org/abs/1708.04332, 2018.
[27] S. Mishra and C. Schwab, Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data, Math. Comp., 81 (2012), pp. 1979-2018, https://doi.org/10.1090/S0025-5718-2012-02574-9. · Zbl 1271.65018
[28] R. Mojgani and M. Balajewicz, Lagrangian Basis Method for Dimensionality Reduction of Convection Dominated Nonlinear flows, https://arxiv.org/abs/1701.04343, 2017.
[29] N. J. Nair and M. Balajewicz, Transported snapshot model order reduction approach for parametric, steady-state fluid flows containing parameter-dependent shocks, Internat. J. Numer. Methods Engrg., 117 (2019), pp. 1234-1262, https://doi.org/10.1002/nme.5998. · Zbl 07865163
[30] N.-C. Nguyen, G. Rozza, and A. Patera, Reduced basis approximation and a posteriori error estimation for the time-dependent viscous burgers’ equation, Calcolo, 46 (2009), pp. 157-185, https://doi.org/10.1007/s10092-009-0005-x. · Zbl 1178.65109
[31] M. Ohlberger and S. Rave, Nonlinear reduced basis approximation of parameterized evolution equations via the method of freezing, C. R. Math., 351 (2013), pp. 901-906, https://doi.org/10.1016/j.crma.2013.10.028. · Zbl 1281.65117
[32] M. Ohlberger and S. Rave, Reduced basis methods: Success, limitations and future challenges, in Proceedings of the Conference Algoritmy 2016, D. Handlovičová and A. Ševčovič, eds., Publishing House of Slovak University of Technology, Bratislava, 2016, pp. 1-12.
[33] P. Pacciarini and G. Rozza, Stabilized reduced basis method for parametrized advection-diffusion PDEs, Comput. Methods Appl. Mech. Engrg., 274 (2014), pp. 1-18, https://doi.org/10.1016/j.cma.2014.02.005. · Zbl 1296.65165
[34] B. Peherstorfer, Model Reduction for Transport-Dominated Problems via Online Adaptive Bases and Adaptive Sampling, https://arxiv.org/abs/1812.02094, 2018.
[35] P. Pettersson, Q. Abbasb, G. Iaccarino, and J. Nordström, Efficiency of shock capturing schemes for Burgers’ equation with boundary uncertainty, in Proceedings of the 7th South African Conference on Computational and Applied Mechanics, 2010. · Zbl 1216.65110
[36] P. Pettersson, G. Iaccarino, and J. Nordström, A stochastic Galerkin method for the Euler equations with Roe variable transformation, J. Comput. Phys. A, 257 (2014), pp. 481-500, https://doi.org/10.1016/j.jcp.2013.10.011. · Zbl 1349.76251
[37] R. Pulch and D. Xiu, Generalised polynomial chaos for a class of linear conservation laws, J. Sci. Comput., 51 (2012), pp. 293-312, https://doi.org/10.1007/s10915-011-9511-5. · Zbl 1258.65008
[38] A. Quarteroni, A. Manzoni, and F. Negri, Reduced Basis Methods for Partial Differential Equations, Springer, New York, 2015. · Zbl 1337.65113
[39] J. Reiss, P. Schulze, J. Sesterhenn, and V. Mehrmann, The shifted proper orthogonal decomposition: A mode decomposition for multiple transport phenomena, SIAM J. Sci. Comput., 40 (2018), pp. A1322-A1344, https://doi.org/10.1137/17M1140571. · Zbl 1446.65212
[40] D. Rim and K. Mandli, Displacement interpolation using monotone rearrangement, SIAM/ASA J. Uncertain. Quantif., 6 (2018), pp. 1503-1531, https://doi.org/10.1137/18M1168315. · Zbl 07003644
[41] D. Rim and K. Mandli, Model Reduction of a Parametrized Scalar Hyperbolic Conservation Law Using Displacement Interpolation, https://arxiv.org/abs/1805.05938, 2018. · Zbl 07003644
[42] D. Rim, S. Moe, and R. J. LeVeque, Transport reversal for model reduction of hyperbolic partial differential equations, SIAM/ASA J. Uncertain. Quantif., 6 (2018), pp. 118-150, https://doi.org/10.1137/17M1113679. · Zbl 1398.65084
[43] C. W. Rowley and J. E. Marsden, Reconstruction equations and the Karhunen-Loève expansion for systems with symmetry, Phys. D, 142 (2000), pp. 1-19, https://doi.org/10.1016/S0167-2789(00)00042-7. · Zbl 0954.35144
[44] P. Schulze, J. Reiss, and V. Mehrmann, Model reduction for a pulsed detonation combuster via shifted proper orthogonal decomposition, in Active Flow and Combustion Control 2018, R. King, ed., Springer, New York, 2019, pp. 271-286.
[45] T. Taddei, S. Perotto, and A. Quarteroni, Reduced basis techniques for nonlinear conservation laws, ESAIM Math. Model. Numer. Anal., 49 (2015), pp. 787-814, https://doi.org/10.1051/m2an/2014054. · Zbl 1316.65079
[46] J. Tryoen, O. L. Maître, and A. Ern, Adaptive anisotropic spectral stochastic methods for uncertain scalar conservation laws, SIAM J. Sci. Comput., 34 (2012), pp. A2459-A2481, https://doi.org/10.1137/120863927. · Zbl 1273.35330
[47] M. Ulbrich, Optimization methods in Banach spaces, in Optimization with PDE Constraints, M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, eds., Springer, New York, 2009, https://www.springer.com/us/book/9781402088384#. · Zbl 1171.90018
[48] G. Welper, \(h\) and \(hp\)-Adaptive Interpolation by Transformed Snapshots for Parametric and Stochastic Hyperbolic PDEs, https://arxiv.org/abs/1710.11481, 2017. · Zbl 1370.41050
[49] G. Welper, Interpolation of functions with parameter dependent jumps by transformed snapshots, SIAM J. Sci. Comput., 39 (2017), pp. A1225-A1250, https://doi.org/10.1137/16M1059904. · Zbl 1370.41050
[50] M. Yano, A. T. Patera, and K. Urban, A space-time hp-interpolation-based certified reduced basis method for Burgers’ equation, Math. Models Methods Appl. Sci., 24 (2014), pp. 1903-1935, https://doi.org/10.1142/S0218202514500110. · Zbl 1295.65098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.