×

A time two-grid algorithm based on finite difference method for the two-dimensional nonlinear time-fractional mobile/immobile transport model. (English) Zbl 1452.65175

Summary: In this paper, we present a time two-grid algorithm based on the finite difference (FD) method for the two-dimensional nonlinear time-fractional mobile/immobile transport model. We establish the problem as a nonlinear fully discrete FD system, where the time derivative is discretized by the second-order backward difference formula (BDF) scheme, the Caputo fractional derivative is treated by means of \(L1\) discretization formula, and the spatial derivative is approximated by the central difference formula. For solving the nonlinear FD system more efficiently, a time two-grid algorithm is proposed, which consists of two steps: first, the nonlinear FD system on a coarse grid is solved by nonlinear iterations; second, the Newton iteration is utilized to solve the linearized FD system on the fine grid. The stability and convergence in \(L^2\)-norm are obtained for the two-grid FD scheme. Numerical results are consistent with the theoretical analysis. Meanwhile, numerical experiments show that the two-grid FD method is much more efficient than the general FD scheme for solving the nonlinear FD system.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N06 Finite difference methods for boundary value problems involving PDEs
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65H10 Numerical computation of solutions to systems of equations
35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals
35Q49 Transport equations
Full Text: DOI

References:

[1] Atangana, A., Baleanu, D.: Numerical solution of a kind of fractional parabolic equations via two difference schemes. In: Abstract and Applied Analysis, Hindawi Publishing Corporation (2013). 10.1155/2013/828764 · Zbl 1470.65148
[2] Chen, H.; Xu, D., A second-order fully discrete difference scheme for a nonlinear partial integro-differential equation (in Chinese), J. Sys. Sci. Math. Scis., 28, 51-70 (2008) · Zbl 1164.65527
[3] Chen, H.; Gan, S.; Xu, D.; Liu, Q., A second-order BDF compact difference scheme for fractional-order Volterra equations, Int. J. Computer Math., 93, 1140-1154 (2016) · Zbl 1347.65193
[4] Chen, H.; Xu, D.; Peng, Y., An alternating direction implicit fractional trapezoidal rule type difference scheme for the two-dimensional fractional evolution equation, Int. J. Comput. Math., 92, 2178-2197 (2015) · Zbl 1332.65187
[5] Dawson, CN; Wheeler, MF; Woodward, CS, A two-grid finite difference scheme for nonlinear parabolic equations, SIAM J. Numer. Anal., 35, 435-452 (1998) · Zbl 0927.65107
[6] Deng, W.; Hesthaven, JS, Local discontinuous Galerkin methods for fractional diffusion equations, ESAIM: M2AN., 47, 1186-1845 (2013) · Zbl 1282.35400
[7] Hu, S., Qiu, W., Chen, H.: A backward Euler difference scheme for the integro-differential equations with the multi-term kernels. Int. J. Comput Math. 10.1080/00207160.2019.1613529 (2019) · Zbl 1483.65216
[8] Jiang, Y.; Ma, J., High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math., 235, 3285-3290 (2011) · Zbl 1216.65130
[9] Li, C.; Yi, Q.; Chen, A., Finite difference methods with non-uniform meshes for nonlinear fractional differential equations, J. Comp. Phys., 316, 614-631 (2016) · Zbl 1349.65246
[10] Li, C.; Zhao, Z.; Chen, Y., Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Comput. Math. Appl., 62, 855-875 (2011) · Zbl 1228.65190
[11] Li, D.; Zhang, C.; Ran, M., A linear finite difference scheme for generalized time fractional Burgers equation, Appl. Math. Modelling., 40, 6096-6081 (2016) · Zbl 1465.65075
[12] Li, X.; Rui, H., A two-grid block-centered finite difference method for the nonlinear time-fractional parabolic equation, J. Sci. Comput., 72, 863-891 (2017) · Zbl 1377.65106
[13] Lin, Y.; Li, X.; Xu, C., Finite difference/spectral approximations for the fractional cable equation, Math. Comput., 80, 1369-1396 (2011) · Zbl 1220.78107
[14] Lin, Y.; Xu, C., Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225, 1533-1552 (2007) · Zbl 1126.65121
[15] Liu, F.; Zhuang, P.; Burrage, K., Numerical methods and analysis for a class of fractional advection-dispersion models, Comput. Math. Appl., 64, 2990-3007 (2012) · Zbl 1268.65124
[16] Liu, F.; Zhuang, P.; Turner, I.; Burrage, K.; Anh, V., A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Model., 38, 3871-3878 (2014) · Zbl 1429.65213
[17] Liu, Q.; Liu, F.; Turner, I.; Anh, V.; Gu, Y., A RBF meshless approach for modeling a fractal mobile/immobile transport model, Appl. Math. Comput., 226, 336-347 (2014) · Zbl 1354.65204
[18] Liu, Y.; Du, Y.; Li, H.; He, S.; Gao, W., Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction-diffusion problem, Comput. Math. Appl., 70, 573-591 (2015) · Zbl 1443.65209
[19] Liu, Y.; Du, Y.; Li, H.; Li, J.; He, S., A two-grid mixed finite element method for a nonlinear fourth-order reaction-diffusion problem with time-fractional derivative, Comput. Math. Appl., 70, 2474-2492 (2015) · Zbl 1443.65210
[20] Liu, Y.; Du, Y.; Li, H.; Wang, J., A two-grid finite element approximation for a nonlinear time-fractional Cable equation, Nonlinear. Dyn., 85, 2535-2548 (2016) · Zbl 1349.65429
[21] Liu, Y.; Yu, Z.; Li, H.; Liu, F.; Wang, J., Time two-mesh algorithm combined with finite element method for time fractional water wave model, Int. J. Heat Mass Transf., 120, 1132-1145 (2018)
[22] Liu, Z.; Cheng, A.; Li, X., A second-order finite difference scheme for quasilinear time fractional parabolic equation based on new fractional derivative, Int. J. Comput. Math., 95, 396-411 (2018) · Zbl 1390.65075
[23] Lopez-Marcos, JC, A difference scheme for a nonlinear partial integro-differential equation, SIAM J. Numer. Anal., 27, 20-31 (1990) · Zbl 0693.65097
[24] Podlubny, I., Fractional Differential Equations (1999), San Diego: Academic Press, San Diego · Zbl 0918.34010
[25] Qiao, L., Xu, D.: Compact alternating direction implicit scheme for integro-differential equations of parabolic type. J. Sci Comput. 10.1007/s10915-017-0630-5 (2018) · Zbl 1445.65050
[26] Qiu, W., Chen, H., Zheng, X.: An implicit difference scheme and algorithm implementation for the one-dimensional time-fractional Burgers equations. Math. Comput Simul. 10.1016/j.matcom.2019.05.017 (2019) · Zbl 1540.65322
[27] Rui, H.; Liu, W., A two-grid block-centered finite difference method for Darcy-Forchheimer flow in porous media, SIAM J. Numer. Anal., 53, 1941-1962 (2015) · Zbl 1327.65214
[28] Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. 10.1029/2003WR002141 (2003)
[29] Sloan, IH; Thomee, V., Time discretization of an integro-differential equation of parabolic type, SIAM J. Numer. Anal., 23, 1052-1061 (1986) · Zbl 0608.65096
[30] Sun, Z.; Wu, X., A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56, 193-209 (2006) · Zbl 1094.65083
[31] Tang, T., A finite difference scheme for partial integro-differential equations with a weakly singular kernel, Appl. Numer. Math., 11, 309-319 (1993) · Zbl 0768.65093
[32] Wei, L.; He, Y., Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems, Appl. Math. Model., 38, 1511-1522 (2014) · Zbl 1427.65267
[33] Xu, J., Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal., 33, 1759-1777 (1996) · Zbl 0860.65119
[34] Xu, J., A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., 15, 231-237 (1994) · Zbl 0795.65077
[35] Zhang, H.; Liu, F.; Phanikumar, MS; Meerschaert, MM, A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model, Comput. Math. Appl., 66, 693-701 (2013) · Zbl 1350.65092
[36] Zhang, H.; Liu, F.; Anh, V., Galerkin finite element approximation of symmetric space-fractional partial differential equations, Appl. Math. Comput., 217, 2534-2545 (2010) · Zbl 1206.65234
[37] Zhou, J.; Xu, D.; Chen, H., A weak Galerkin finite element method for multi-term time-fractional diffusion equations, East Asian J. Appl. Math., 8, 181-193 (2018) · Zbl 1468.65157
[38] Zhou, J., Xu, D., Dai, X.: Weak Galerkin finite element method for the parabolic integro-differential equation with weakly singular kernel, Comput. Appl Math. 10.1007/s40314-019-0807-7 (2019) · Zbl 1438.65303
[39] Zhuang, P.; Liu, F.; Turner, I.; Gu, Y., Finite volume and finite element methods for solving a one-dimensional space-fractional Boussinesq equation, Appl. Math. Model., 38, 3860-3870 (2014) · Zbl 1429.65233
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.