×

Effective slow dynamics models for a class of dispersive systems. (English) Zbl 1452.35014

Summary: We consider dispersive systems of the form
\[ \begin{aligned}\partial_tU=\Lambda_UU+B_U(U,V),\qquad\varepsilon\partial_tV=\Lambda_VV+B_V(U,U)\end{aligned} \]
in the singular limit \(\varepsilon\rightarrow 0\), where \(\Lambda_U,\Lambda_V\) are linear and \(B_U,B_V\) bilinear mappings. We are interested in deriving error estimates for the approximation obtained through the regular limit system
\[ \begin{aligned}\partial_t\psi_U=\Lambda_U\psi_U-B_U(\psi_U,\Lambda_V^{-1}B_V(\psi_U,\psi_U))\end{aligned} \]
from a more general point of view. Our abstract approximation theorem applies to a number of semilinear systems, such as the Dirac-Klein-Gordon system, the Klein-Gordon-Zakharov system, and a mean field polaron model. It extracts the common features of scattered results in the literature, but also gains an approximation result for the Dirac-Klein-Gordon system which has not been documented in the literature before. We explain that our abstract approximation theorem is sharp in the sense that there exists a quasilinear system of the same structure where the regular limit system makes wrong predictions.

MSC:

35B25 Singular perturbations in context of PDEs
35K90 Abstract parabolic equations
35L90 Abstract hyperbolic equations
35L10 Second-order hyperbolic equations

References:

[1] Added, H.; Added, S., Equations of Langmuir turbulence and nonlinear Schrödinger equation: smoothness and approximation, J. Funct. Anal., 79, 1, 183-210 (1988) · Zbl 0655.76044 · doi:10.1016/0022-1236(88)90036-5
[2] Bergé, L.; Bidégaray, B.; Colin, T., A perturbative analysis of the time-envelope approximation in strong Langmuir turbulence, Physica D, 95, 3-4, 351-379 (1996) · Zbl 0899.76386 · doi:10.1016/0167-2789(96)00058-9
[3] Bejenaru, I.; Herr, S., On global well-posedness and scattering for the massive Dirac-Klein-Gordon system, J. Eur. Math. Soc., 19, 8, 2445-2467 (2017) · Zbl 1375.35420 · doi:10.4171/JEMS/721
[4] Bechouche, P.; Nieto, J.; Ruiz Arriola, E.; Soler, J., On the time evolution of the mean-field polaron, J. Math. Phys., 41, 7, 4293-4312 (2000) · Zbl 0977.82050 · doi:10.1063/1.533343
[5] Colin, T.; Ebrard, G.; Gallice, G.; Texier, B., Justification of the Zakharov model from Klein-Gordon-wave systems, Commun. Partial Differ. Equ., 29, 9-10, 1365-1401 (2004) · Zbl 1063.35111
[6] Dörfler, W.; Lechleiter, A.; Plum, M.; Schneider, G.; Wieners, C., Photonic Crystals. Mathematical Analysis and Numerical Approximation (2011), Berlin: Springer, Berlin · Zbl 1238.78001
[7] Daub, M.; Schneider, G.; Schratz, K., From the Klein-Gordon-Zakharov system to the Klein-Gordon equation, Math. Methods Appl. Sci., 39, 18, 5371-5380 (2016) · Zbl 1352.35072 · doi:10.1002/mma.3922
[8] Fenichel, N., Geometric singular perturbation theory for ordinary differential equations, J. Differ. Equ., 31, 53-98 (1979) · Zbl 0476.34034 · doi:10.1016/0022-0396(79)90152-9
[9] Fukuda, I.; Tsutsumi, M., On the Yukawa-coupled Klein-Gordon-Schrödinger equations in three space dimensions, Proc. Jpn. Acad., 51, 6, 402-405 (1975) · Zbl 0313.35065 · doi:10.3792/pja/1195518563
[10] Griesemer, M.; Schmid, J.; Schneider, G., On the dynamics of the mean-field polaron in the high-frequency limit, Lett. Math. Phys., 107, 10, 1809-1821 (2017) · Zbl 1436.35289 · doi:10.1007/s11005-017-0969-4
[11] Haas, T., Schneider, G.: Failure of the \(n\)-wave interaction approximation without imposing periodic boundary conditions. CRC 1173-Preprint 2018/41, Karlsruhe Institute of Technology, Karlsruhe (2018)
[12] Jones, CKRT; Kopell, N., Tracking invariant manifolds with differential forms in singularly perturbed systems, J. Differ. Equ., 108, 1, 64-88 (1994) · Zbl 0796.34038 · doi:10.1006/jdeq.1994.1025
[13] Kuehn, C., Multiple Time Scale Dynamics (2015), Cham: Springer, Cham · Zbl 1335.34001
[14] Masmoudi, N.; Nakanishi, K., From the Klein-Gordon-Zakharov system to the nonlinear Schrödinger equation, J. Hyperbolic Differ. Equ., 2, 4, 975-1008 (2005) · Zbl 1089.35070 · doi:10.1142/S0219891605000683
[15] Ozawa, T.; Tsutsumi, Y., Existence and smoothing effect of solutions for the Zakharov equations, Publ. Res. Inst. Math. Sci., 28, 3, 329-361 (1992) · Zbl 0842.35116 · doi:10.2977/prims/1195168430
[16] Schneider, G., Validity and limitation of the Newell-Whitehead equation, Math. Nachr., 176, 249-263 (1995) · Zbl 0844.35120 · doi:10.1002/mana.19951760118
[17] Schneider, G.: Validity and non-validity of the nonlinear Schrödinger equation as a model for water waves. In: Lectures on the Theory of Water Waves. Papers from the talks given at the Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, July-August, 2014, pp. 121-139. Cambridge University Press, Cambridge (2016) · Zbl 1360.76061
[18] Schneider, G.; Sunny, DA; Zimmermann, D., The NLS approximation makes wrong predictions for the water wave problem in case of small surface tension and spatially periodic boundary conditions, J. Dyn. Differ. Equ., 27, 3, 1077-1099 (2015) · Zbl 1344.35138 · doi:10.1007/s10884-014-9350-9
[19] Schneider, G.; Uecker, H., Nonlinear PDEs. A Dynamical Systems Approach (2017), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1402.35001
[20] Sanders, JA; Verhulst, F.; Murdock, J., Averaging Methods in Nonlinear Dynamical Systems (2007), New York, NY: Springer, New York, NY · Zbl 1128.34001
[21] Schochet, SH; Weinstein, MI, The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence, Commun. Math. Phys., 106, 4, 569-580 (1986) · Zbl 0639.76054 · doi:10.1007/BF01463396
[22] Schneider, G.; Zimmermann, D., Justification of the Ginzburg-Landau approximation for an instability as it appears for Marangoni convection, Math. Methods Appl. Sci., 36, 9, 1003-1013 (2013) · Zbl 1285.35114 · doi:10.1002/mma.2654
[23] Texier, B., Derivation of the Zakharov equations, Arch. Ration. Mech. Anal., 184, 1, 121-183 (2007) · Zbl 1370.35249 · doi:10.1007/s00205-006-0034-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.