×

Real-time computational optimal control of an MHD flow system with parameter uncertainty quantification. (English) Zbl 1451.93166

Summary: In this paper, we consider a magnetic control problem arising in a one-dimensional (1-D) MHD flow system governed by a set of coupled partial differential equations (PDEs) with parameter uncertainty quantification. We first formulate the control problem as a PDE-constrained optimization problem, which is then reduced to a semi-discrete optimal control problem governed by a set of ordinary differential equations (ODEs) through a finite-element approach. The control parameterization method is then utilized to convert the semi-discrete optimal control problem into an approximate parameter selection problem and the gradient formulas of the cost function corresponding to the decision variables are derived. In order to meet the requirement of real-time control design for the MHD flow system, we further propose a multi-fidelity probabilistic collocation method for the optimal control by introducing a high fidelity model and a low fidelity model to improve the computational optimization efficiency while maintaining the high computational accuracy. Numerical results are illustrated to validate the effectiveness of our proposed computational method.

MSC:

93C20 Control/observation systems governed by partial differential equations
93C95 Application models in control theory
49J15 Existence theories for optimal control problems involving ordinary differential equations
76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
93-08 Computational methods for problems pertaining to systems and control theory
Full Text: DOI

References:

[1] Todo, Y.; Van Zeeland, M. A.; Bierwage, A.; Heidbrink, W. W.; Austin, M. E., Validation of comprehensive magnetohydrodynamic hybrid simulations for Alfvén eigenmode induced energetic particle transport in DIII-D plasmas, Nucl. Fusion, 55, 7, 073020 (2015)
[2] Qian, S.; Bau, H. H., Magneto-hydrodynamics based microfluidics, Mech. Res. Commun., 36, 1, 10-21 (2009) · Zbl 1258.76210
[3] Wan, J.; Zuo, Y.; Wang, Z.; Yan, F.; Ge, L.; Liang, Z., Magnetohydrodynamic microfluidic drive of ionic liquids, J. Microelectromech. Syst., 23, 6, 1463-1470 (2014)
[4] Bhatti, M.; Zeeshan, A.; Ellahi, R.; Ijaz, N., Heat and mass transfer of two-phase flow with Electric double layer effects induced due to peristaltic propulsion in the presence of transverse magnetic field, J. Mol. Liq., 230, 237-246 (2017)
[5] Hassan, M.; Zeeshan, A.; Majeed, A.; Ellahi, R., Particle shape effects on ferrofuids flow and heat transfer under influence of low oscillating magnetic field, J. Magn. Magn. Mater., 443, 36-44 (2017)
[6] Sheikholeslami, M.; Hayat, T.; Alsaedi, A., Numerical simulation of nanofluid forced convection heat transfer improvement in existence of magnetic field using lattice boltzmann method, Int. J. Heat Mass Transf., 108, 1870-1883 (2017)
[7] Sheikholeslami, M.; Sadoughi, M., Mesoscopic method for MHD nanofluid flow inside a porous cavity considering various shapes of nanoparticles, Int. J. Heat Mass Transf., 113, 106-114 (2017)
[8] Sheikholeslami, M.; Shehzad, S., Thermal radiation of ferrofluid in existence of lorentz forces considering variable viscosity, Int. J. Heat Mass Transf., 109, 82-92 (2017)
[9] Qian, S.; Bau, H. H., Magnetohydrodynamic flow of RedOx electrolyte, Phys. Fluids, 17, 6, 067105 (2005) · Zbl 1187.76434
[10] Sheikholeslami, M.; Ganji, D. D.; Rashidi, M. M., Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model, J. Magn. Magn. Mater., 416, 164-173 (2016)
[11] Sheikholeslami, M.; Shehzad, S. A., Magnetohydrodynamic nanofluid convection in a porous enclosure considering heat flux boundary condition, Int. J. Heat Mass Transf., 106, 1261-1269 (2017)
[12] Xu, C.; Schuster, E.; Vazquez, R.; Krstic, M., Stabilization of linearized 2D magnetohydrodynamic channel flow by backstepping boundary control, Syst. Control Lett., 57, 10, 805-812 (2008) · Zbl 1162.93031
[13] Krstic, M.; Smyshlyaev, A., Boundary Control of PDEs: A Course on Backstepping Designs (2008), SIAM: SIAM Philadelphia, PA, USA · Zbl 1149.93004
[14] Tang, S.; Xie, C., Stabilization for a coupled PDE-ODE control system, J. Frankl. Inst., 348, 8, 2142-2155 (2011) · Zbl 1231.93095
[15] Zhao, A.; Xie, C., Stabilization of coupled linear plant and reaction-diffusion process, J. Frankl. Inst., 351, 2, 857-877 (2014) · Zbl 1293.93177
[16] Schuster, E.; Luo, L. X.; Krstić, M., MHD channel flow control in 2D: mixing enhancement by boundary feedback, Automatica, 44, 10, 2498-2507 (2008) · Zbl 1155.93358
[17] Ren, Z.; Guo, S.; Li, Z.; Wu, Z., Adjoint-based parameter and state estimation in 1-D magnetohydrodynamic (MHD) flow system, J. Ind. Manag. Opt., 1213-1218 (2018)
[18] Evcin, C.; Uğur, O.; Tezer-Sezgin, M., Determining the optimal parameters for the MHD flow and heat transfer with variable viscosity and hall effect, Comput. Math. Appl., 76, 6, 1338-1355 (2018) · Zbl 1448.76188
[19] Vazquez, R.; Schuster, E.; Krstic, M., A closed-form full-state feedback controller for stabilization of 3D magnetohydrodynamic channel flow, J. Dyn. Syst. Measur. Control, 131, 4, 041001 (2009)
[20] Zhao, Z.; Liu, Z.; Li, Z.; Wang, N.; Yang, J., Control design for a vibrating flexible marine riser system, J. Frankl. Inst., 354, 18, 8117-8133 (2017) · Zbl 1380.93219
[21] Xing, X.; Liu, J., Switching fault-tolerant control of a moving vehicle-mounted flexible manipulator system with state constraints, J. Frankl. Inst., 355, 6, 3050-3078 (2018) · Zbl 1395.93282
[22] Wang, J.; Wu, H.; Huang, T.; Ren, S.; Wu, J., Pinning control for synchronization of coupled reaction-diffusion neural networks with directed topologies, IEEE Trans. Syst. Man Cybern.: Syst., 46, 8, 1109-1120 (2016)
[23] Wang, J.; Wu, H.; Sun, C., Local exponential stabilization via boundary feedback controllers for a class of unstable semi-linear parabolic distributed parameter processes, J. Frankl. Inst., 354, 13, 5221-5244 (2017) · Zbl 1395.93487
[24] Ren, Z.; Xu, C.; Zhou, Z.; Wu, Z.; Chen, T., Boundary stabilization of a class of reaction-advection-diffusion systems via a gradient-based optimization approach, J. Frankl. Inst., 356, 1, 173-195 (2019) · Zbl 1405.93123
[25] Chen, T.; Zhou, S.; Ren, Z.; Xu, C., Optimal open-loop control for 2-D colloid transport in the dead-end microchannel, IEEE Trans. Control Syst. Technol., 27, 6, 2757-2765 (2019)
[26] Chen, T.; Xu, C.; Ren, Z., Computational optimal control of 1D colloid transport by solute gradients in dead-end micro-channels, J. Ind. Manag. Opt., 978-989 (2018) · Zbl 1412.49009
[27] Teo, K. L.; Goh, C. J.; Wong, K. H., A Unified Computational Approach to Optimal Control Problems (1991), Longman Scientific and Technical · Zbl 0747.49005
[28] Lin, Q.; Loxton, R.; Teo, K. L., The control parameterization method for nonlinear optimal control: a survey, J. Ind. Mana. Opt., 10, 1, 275-309 (2013) · Zbl 1276.49025
[29] Liu, P.; Liu, X.; Wang, P.; Li, G.; Xiao, L.; Yan, J.; Ren, Z., Control variable parameterization with penalty approach for hypersonic vehicle reentry optimization, Int. J. Control, 1-25 (2018)
[30] Ren, Z.; Zhou, Z.; Xu, C.; Wu, Z.; Chen, T., Computational bilinear optimal control for a class of one-dimensional MHD flow systems, ISA Trans., 85, 129-140 (2019)
[31] Landau, L. D.; Bell, J. S.; Kearsley, M. J.; Pitaevskii, L. P.; Lifshitz, E. M.; Sykes, J. B., Electrodynamics of Continuous Media (2013), Elsevier
[32] Pardalos, P. M.; Yatsenko, V. A., Optimization and Control of Bilinear Systems: Theory, Algorithms, and Applications (2010), Springer Science & Business Media
[33] Griesse, R.; Kunisch, K., Optimal control for a stationary MHD system in velocity-current formulation, SIAM J. Control Opt., 45, 5, 1822-1845 (2006) · Zbl 1354.49004
[34] Li, B.; Xu, C.; Teo, K. L.; Chu, J., Time optimal Zermelo’s navigation problem with moving and fixed obstacles, Appl. Math. Comput., 224, 866-875 (2013) · Zbl 1337.49071
[35] Liu, P.; Li, G.; Liu, X., Fast engineering optimization: a novel highly effective control parameterization approach for industrial dynamic processes, ISA Trans., 58, 248-254 (2015)
[36] Yu, C.; Lin, Q.; Loxton, R.; Teo, K. L.; Wang, G., A hybrid time-scaling transformation for time-delay optimal control problems, J. Opt. Theory Appl., 169, 3, 876-901 (2016) · Zbl 1342.49003
[37] Loxton, R.; Lin, Q.; Rehbock, V.; Teo, K. L., Control parameterization for optimal control problems with continuous inequality constraints: new convergence results, Numer. Algebra Control Opt., 2, 3, 571-599 (2012) · Zbl 1256.65065
[38] Loxton, R.; Teo, K. L.; Rehbock, V.; Yiu, K. F.C., Optimal control problems with a continuous inequality constraint on the state and the control, Automatica, 45, 10, 2250-2257 (2009) · Zbl 1179.49032
[39] Man, J.; Zhang, J.; Wu, L.; Zeng, L., ANOVA-based multi-fidelity probabilistic collocation method for uncertainty quantification, Adv. Water Resour., 122, 176-186 (2018)
[40] Ng, L. W.T.; Eldred, M., Multifidelity uncertainty quantification using non-intrusive polynomial chaos and stochastic collocation, Proceedings of the Fifty-third AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference Twentieth AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA (2012)
[41] M.G. Fernández-Godino, C. Park, N.-H. Kim, R.T. Haftka, Review of multi-fidelity models, arXiv preprint arXiv:1609.07196 (2016).
[42] Xiu, D., Numerical Methods for Stochastic Computations: A Spectral Method Approach (2010), Princeton University Press · Zbl 1210.65002
[43] Li, G.; Wang, S.; Rabitz, H.; Wang, S.; Jaffé, P., Global uncertainty assessments by high dimensional model representations (HDMR), Chem. Eng. Sci., 57, 21, 4445-4460 (2002)
[44] Man, J.; Liao, Q.; Zeng, L.; Wu, L., ANOVA-based transformed probabilistic collocation method for Bayesian data-worth analysis, Advances in Water Resources, 110, 203-214 (2017)
[45] Li, G.; Rosenthal, C.; Rabitz, H., High dimensional model representations, J. Phys. Chem. A, 105, 33, 7765-7777 (2001)
[46] Rabitz, H.; Aliş, O. F., General foundations of high-dimensional model representations, J. Math. Chem., 25, 2-3, 197-233 (1999) · Zbl 0957.93004
[47] Wang, Y.; Ren, L.; Zhang, Z.; Lin, G.; Xu, C., Sparsity-promoting elastic net method with rotations for high-dimensional nonlinear inverse problem, Comput. Methods Appl. Mech. Eng., 345, 263-282 (2019) · Zbl 1440.65065
[48] Chen, Y.; Meng, T.; Wang, Y.; Wang, K.; Meng, S.; Huang, D., Iterative learning control of two-phase laminar flow interface in Y-shaped microfluidic channel, IEEE Trans. Control Syst. Technol., 99, 1-6 (2018)
[49] Zhou, S.; Xu, C.; Luo, L., Parameter optimization of reduced fluid model via sparse point measurements, IEEE Trans. Syst. Man Cybern.: Syst., 1-10 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.