×

Output feedback adaptive fault-tolerant compensation tracking control for linear systems based on the closed-loop reference model. (English) Zbl 1451.93131

Summary: This paper investigates the problem of output feedback adaptive compensation tracking control for linear systems subject to external disturbances and actuator failures including loss of effectiveness faults and bias faults. The impact of actuator faults on the transient performance of systems can be mitigated predicated on the closed-loop reference model with an additional degrees of design freedom. Using the estimation information provided by the adaptive mechanism, an output feedback adaptive fault-tolerant control strategy is developed to track closed-loop reference model systems. It is shown that all the signals of the resulting closed-loop system are bounded. Finally, simulation results are given to demonstrate the effectiveness of the proposed fault-tolerant tracking control method.

MSC:

93B52 Feedback control
93C40 Adaptive control/observation systems
93B35 Sensitivity (robustness)
93C05 Linear systems in control theory
Full Text: DOI

References:

[1] YangG‐H, WangJ, SohY. Reliable H_∞ controller design for linear systems. Automatica. 2001;37(5):717‐725. · Zbl 0990.93029
[2] DongJ, YangG‐H. Reliable state feedback control of T-S fuzzy systems with sensor faults. IEEE Trans Fuzzy Syst. 2015;23(2):421‐433.
[3] ShenQ, JiangB, CocquempotV. Adaptive fuzzy observer‐based active fault‐tolerant dynamic surface control for a class of nonlinear systems with actuator faults. IEEE Trans Fuzzy Syst. 2014;22(2):338‐349.
[4] MahmoudMS, MemonAM, ShiP. Observer‐based fault‐tolerant control for a class of nonlinear networked control systems. Int J Control. 2014;87(8):1707‐1715. · Zbl 1317.93089
[5] ZhangK, JiangB, ShiP. Fast fault estimation and accommodation for dynamical systems. IET Control Theory Appl. 2009;3(2):189‐199.
[6] GaoZ. Fault estimation and fault‐tolerant control for discrete‐time dynamic systems. IEEE Trans Ind Electron. 2015;62(6):3874‐3884.
[7] BoškovicJD, MehraRK. Multiple‐model adaptive flight control scheme for accommodation of actuator failures. J Guid Control Dyn. 2002;25(4):712‐724.
[8] AlwiH, EdwardsC. Fault tolerant control using sliding modes with on‐line control allocation. Automatica. 2008;44(7):1859‐1866. · Zbl 1149.93313
[9] HaoL‐Y, YangG‐H. Robust adaptive fault‐tolerant control of uncertain linear systems via sliding‐mode output feedback. Int J Robust Nonlinear Control. 2015;25(14):2461‐2480. · Zbl 1328.93084
[10] ZhangX, ParisiniT, PolycarpouMM. Adaptive fault‐tolerant control of nonlinear uncertain systems: an information‐based diagnostic approach. IEEE Trans Autom Control. 2004;49(8):1259‐1274. · Zbl 1365.93250
[11] PolycarpouMM. Fault accommodation of a class of multivariable nonlinear dynamical systems using a learning approach. IEEE Trans Autom Control. 2001;46(5):736‐742. · Zbl 1006.93074
[12] JinX. Adaptive fault tolerant control for a class of multi‐input multi‐output nonlinear systems with both sensor and actuator faults. Int J Adapt Control Signal Process. 2017;31(10):1418‐1427. · Zbl 1376.93034
[13] XieC‐H, YangG‐H. Model‐free fault‐tolerant control approach for uncertain state‐constrained linear systems with actuator faults. Int J Adapt Control Signal Process. 2017;31(2):223‐239. · Zbl 1358.93068
[14] ZuoZ, HoDWC, WangY. Fault tolerant control for singular systems with actuator saturation and nonlinear perturbation. Automatica. 2010;46(3):569‐576. · Zbl 1194.93093
[15] ZhangZ, XuS, GuoY, ChuY. Robust adaptive output‐feedback control for a class of nonlinear systems with time‐varying actuator faults. Int J Adapt Control Signal Process. 2010;24(9):743‐759. · Zbl 1204.93040
[16] LiY‐X, YangG‐H. Adaptive asymptotic tracking control of uncertain nonlinear systems with input quantization and actuator faults. Automatica. 2016;72:177‐185. · Zbl 1344.93061
[17] WangW, WenC. Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance. Automatica. 2010;46(12):2082‐2091. · Zbl 1205.93083
[18] SongY, HuangX, WenC. Robust adaptive fault‐tolerant PID control of MIMO nonlinear systems with unknown control direction. IEEE Trans Ind Electron. 2017;64(6):4876‐4884.
[19] YuX, LiuZ, ZhangY. Fault‐tolerant flight control design with finite‐time adaptation under actuator stuck failures. IEEE Trans Control Syst Technol. 2017;25(4):1431‐1440.
[20] LiY‐X. Finite time command filtered adaptive fault tolerant control for a class of uncertain nonlinear systems. Automatica. 2019;106:117‐123. · Zbl 1429.93181
[21] ChenM, TaoG. Adaptive fault‐tolerant control of uncertain nonlinear large‐scale systems with unknown dead zone. IEEE Trans Cybern. 2016;46(8):1851‐1862.
[22] LiX‐J, YangG‐H. Robust adaptive fault‐tolerant control for uncertain linear systems with actuator failures. IET Control Theory Appl. 2012;6(10):1544‐1551.
[23] LiY‐X, YangG‐H. Robust adaptive fault‐tolerant control for a class of uncertain nonlinear time delay systems. IEEE Trans Syst Man Cybern Syst. 2017;47(7):1554‐1563.
[24] LiuL, LiuY‐J, TongS. Neural networks‐based adaptive finite‐time fault‐tolerant control for a class of strict‐feedback switched nonlinear systems. IEEE Trans Cybern. 2018:1‐10.
[25] XiaoS, DongJ. Robust adaptive fault‐tolerant tracking control for uncertain linear systems with time‐varying performance bounds. Int J Robust Nonlinear Control. 2019;29(4):849‐866. · Zbl 1418.93081
[26] JinX. Adaptive fault‐tolerant control for a class of output‐constrained nonlinear systems. Int J Robust Nonlinear Control. 2015;25(18):3732‐3745. · Zbl 1336.93047
[27] LiY, SunK, TongS. Adaptive fuzzy robust fault‐tolerant optimal control for nonlinear large‐scale systems. IEEE Trans Fuzzy Syst. 2017;26(5):2899‐2914.
[28] TongS, WangT, LiY. Fuzzy adaptive actuator failure compensation control of uncertain stochastic nonlinear systems with unmodeled dynamics. IEEE Trans Fuzzy Syst. 2014;22(3):563‐574.
[29] LiuY‐J, LuS, TongS, ChenX, ChenCP, LiD‐J. Adaptive control‐based barrier Lyapunov functions for a class of stochastic nonlinear systems with full state constraints. Automatica. 2018;87:83‐93. · Zbl 1378.93137
[30] LiuY‐J, MaL, LiuL, TongS, ChenCP. Adaptive neural network learning controller design for a class of nonlinear systems with time‐varying state constraints. IEEE Trans Neural Netw Learn Syst. 2019.
[31] GibsonTE, AnnaswamyAM, LavretskyE. Adaptive systems with closed‐loop reference‐models, part I: transient performance. Paper presented at: 2013 American Control Conference; 2013; Washington, DC.
[32] DeyR, JainSK, PadhyPK. Robust closed loop reference MRAC with PI compensator. IET Control Theory Appl. 2016;10(18):2378‐2386.
[33] GibsonTE, AnnaswamyAM, LavretskyE. On adaptive control with closed‐loop reference models: transients, oscillations, and peaking. IEEE Access. 2013;1:703‐717.
[34] GibsonTE, QuZ, AnnaswamyAM, LavretskyE. Adaptive output feedback based on closed‐loop reference models. IEEE Trans Autom Control. 2015;60(10):2728‐2733. · Zbl 1360.93350
[35] XieJ, ZhaoJ. H_∞ model reference adaptive control for switched systems based on the switched closed‐loop reference model. Nonlinear Anal Hybrid Syst. 2018;27:92‐106. · Zbl 1378.93062
[36] XiaoS, DongJ. Robust adaptive fault‐tolerant tracking control for uncertain linear systems with actuator failures based on the closed‐loop reference model. IEEE Trans Syst Man Cybern Syst. 2018. https://doi.org/10.1109/TSMC.2018.2876125 · doi:10.1109/TSMC.2018.2876125
[37] JiangB, StaroswieckiM, CocquempotV. Fault accommodation for nonlinear dynamic systems. IEEE Trans Autom Control. 2006;51(9):1578‐1583. · Zbl 1366.93694
[38] GruenwaldBC, WagnerD, YucelenT, MuseJA. Computing actuator bandwidth limits for model reference adaptive control. Int J Control. 2016;89(12):2434‐2452. · Zbl 1360.93351
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.