×

Numerical study for a novel variable-order multiple time delay awareness programs mathematical model. (English) Zbl 1451.92312

This paper studies a variable-order multiple time delay awareness programs model involving two types of the Atangana-Baleanu variable-order fractional derivative in Caputo sense. They are variable-order derivative type 1 containing the memory effect changes with time and variable-order derivative type 2 containing the history memory of derivative order itself. For these models, the authors investigate the basic reproduction number, equilibrium points and the asymptotic stability. Numerical studies are performed by introducing two methods including the implicit Adams-Moulton method and the predictor-corrector method. Both stability and convergence are examined. Numerical simulations are provided to illustrate the theoretical algorithms.

MSC:

92D30 Epidemiology
34K37 Functional-differential equations with fractional derivatives
34K20 Stability theory of functional-differential equations
65L99 Numerical methods for ordinary differential equations
Full Text: DOI

References:

[1] Alkahtani, B. S.T.; Atangana, A.; Koca, I., Novel analysis of the fractional Zika model using the Adams type predictor-corrector rule for non-singular and non-local fractional operators, J. Nonlinear Sci. Appl., 10, 6, 3191-3200 (2017) · Zbl 1412.34059
[2] Allen, L. J.S., An Introduction to Mathematical Biology (2007), Prentice Hall: Prentice Hall NJ
[3] Atangana, A.; Baleanu, D., New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20, 2, 763-769 (2016)
[4] Baleanu, D., Fractional variational principles in action, Phys. Scr., 136, 1-4 (2009)
[5] Baleanu, D.; Jajarmi, A.; Bonyah, E.; Hajipour, M., New aspects of poor nutrition in the life cycle within the fractional calculus, Adv. Differ. Equ., 2018, 1, Article 230 pp. (2018) · Zbl 1446.92194
[6] Baleanu, D.; Jleli, M.; Kumar, S.; Samet, B., A fractional derivative with two singular kernels and application to a heat conduction problem, Adv. Differ. Equ., 252 (2020) · Zbl 1482.26005
[7] Bellman, R.; Cooke, K. L., Differential Difference Equations (1963), Academic Press: Academic Press New York · Zbl 0105.06402
[8] Brauer, F.; Driessche, P.; Wu, J., Mathematical Epidemiology, vol. 1 (2008), Springer · Zbl 1159.92034
[9] Cao, W.; Zeng, F.; Zhang, Z.; Karniadakis, G. E.M., Implicit-explicit difference schemes for nonlinear fractional differential equations with non-smooth solutions, SIAM J. Sci. Comput., 38, 5 (2016) · Zbl 1355.65104
[10] Caputo, M.; Fabrizio, M., A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1, 2, 73-85 (2015)
[11] Carvalho, A.; Pinto, C. M.A., A delay fractional order model for the co-infection of malaria and HIV/AIDS, Commun. Nonlinear Sci. Numer. Simul., 5, 168-186 (2017)
[12] Cui, J.; Tao, X.; Zhu, H., An SIS infection model incorporating media coverage, Rocky Mount. J. Math., 38, 5, 1323-1334 (2008) · Zbl 1170.92024
[13] Diethelm, K.; Ford, N. J.; Freed, A. D., A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29, 3-22 (2002) · Zbl 1009.65049
[14] Greenhalgh, D.; Rana, S.; Samanta, S.; Sardar, T.; Bhattacharya, S.; Chattopadhyay, J., Awareness programs control infectious disease-multiple delay induced mathematical model, Appl. Math. Comput., 251, 539-563 (2015) · Zbl 1328.92075
[15] Hale, J. K., Theory of Functional Differential Equations (1977), Springer-Verlag · Zbl 0352.34001
[16] Hale, J. K.; Verduyn Lunel, S. M., Introduction to functional differential equations, Appl. Math. Sci. (1991)
[17] Hall, G., The stability of predictor-corrector methods, Comput. J., 9, 4, 410-412 (1967) · Zbl 0153.18201
[18] Hassani, H.; Avazzadeh, Z.; Tenreiro Machado, J. A., Numerical approach for solving variable-order space-time fractional telegraph equation using transcendental Bernstein series, Eng. Comput. (2019) · Zbl 1430.34005
[19] (Klages, R.; Radons, G.; Sokolov, I. M., Anomalous Transport: Foundations and Applications. Anomalous Transport: Foundations and Applications, Nonlinear & Comput. Sys., vol. 1 (2008)), 680
[20] Kumar, S.; Ghosh, S.; Lotayif, M. S.M.; Samet, B., A model for describing the velocity of a particle in Brownian motion by Robotnov function based fractional operator, AEJ, 59, 1435-1449 (2020)
[21] Kumar, S.; Kumar, R.; Cattani, C.; Samet, B., Chaotic behaviour of fractional predator-prey dynamical system, Chaos Solitons Fractals, 135, Article 109811 pp. (2020) · Zbl 1489.92119
[22] Kumar, S.; Samet, S. G.B.; Doungmo Goufo, E. F., An analysis for heat equations arises in diffusion process using new Yang-Abdel-Aty-Cattani fractional operator, Math. Methods Appl. Sci., 43, 6062-6080 (2020) · Zbl 1452.35242
[23] Li, C.; Zeng, F., Numerical methods for fractional calculus, Anal. Sci. Comput. Ser. (2015) · Zbl 1326.65033
[24] Li, C. P.; Zeng, F. H., The finite difference methods for fractional ordinary differential equations, Numer. Funct. Anal. Optim., 34, 149-179 (2013) · Zbl 1267.65094
[25] Liu, W., A SIRS epidemic model incorporating media coverage with random perturbation, Abstr. Appl. Anal., 1, 9 (2013) · Zbl 1470.34132
[26] Lorenzo, C. F.; Hartley, T. T., Variable order and distributed order fractional operators, Nonlinear Dyn., 7, 29, 57-98 (2002) · Zbl 1018.93007
[27] Machado, J.; Lopes, A.; Duarte, F.; Ortigueira, M.; Rato, R., Rhapsody in fractional, Fract. Calc. Appl. Anal., 17, 4, 1188-1214 (2014) · Zbl 1314.39007
[28] Misra, A. K.; Sharma, A.; Shukla, J. B., Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases, Math. Comput. Model., 53, 5, 1221-1228 (2011) · Zbl 1217.34097
[29] Misra, A. K.; Sharma, A.; Singh, V., Effect of awareness programs in controlling the prevalence of an epidemic with time delay, Bio. Sys., 19, 2, 389-402 (2011) · Zbl 1228.92067
[30] Ortigueira, M. D.; Valério, Duarte; Tenreiro Machado, J., Variable order fractional systems, Commun. Nonlinear Sci. Numer. Simul., 71, 231-243 (2019) · Zbl 1464.26007
[31] Rihan, F.; Baleanu, D.; Lakshmanan, S.; Rakkiyappan, R., On fractional SIRC model with Salmonella bacterial infection, Abstr. Appl. Anal., 1, 9 (2014) · Zbl 1406.92615
[32] Rihan, F. A.; Tunç, C.; Saker, S. H.; Lakshmanan, S.; Rakkiyappan, R., Applications of delay differential equations in biological systems, Complexity, 1, 1-3 (2018) · Zbl 1405.00027
[33] Samko, S. G., Fractional integration and differentiation of variable order, Anal. Math., 21, 3, 213-236 (1995) · Zbl 0838.26006
[34] Samko, S. G.; Ross, B., Integration and differentiation to a variable fractional order, Integral Transforms Spec. Funct., 1, 4, 277-300 (1993) · Zbl 0820.26003
[35] Shen, S.; Liu, F.; Anh, V.; Turner, I.; Chen, J., A characteristic difference method for the variable-order fractional advection-diffusion equation, J. Appl. Math. Comput., 1, 16 (2013) · Zbl 1296.65114
[36] Silva, C. J.; Maurer, H.; Torres, D. F., Optimal control of a tuberculosis model with state and control delays, Math. Biosci. Eng., 14, 1, 321-337 (2017) · Zbl 1351.49052
[37] Solís-Pérez, J. E.; Gómez-Aguilar, J. F., Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws, Chaos Solitons Fractals, 14, 175-185 (2018) · Zbl 1415.65148
[38] Sun, H.; Chang, A.; Zhang, Y.; Chen, W., A review on variable-order fractional differential equations: mathematical foundations, physical models, and its applications, Fract. Calc. Appl. Anal., 22, 1, 27-59 (2019) · Zbl 1428.34001
[39] Sun, H. G.; Chen, W.; Wei, H.; Chen, Y. Q., A comparative study of constant order and variable order fractional models in characterizing memory property of systems, Eur. Phys. J., 193, 185-192 (2011)
[40] Sweilam, N. H.; Abou Hasan, M. M., Numerical simulation for the variable-order fractional Schrödinger equation with the quantum Riesz-Feller derivative, Adv. Appl. Math. Mech., 9, 4, 990-1011 (2017) · Zbl 1488.65289
[41] Sweilam, N. H.; Abou Hasan, M. M., An improved method for nonlinear variable order Lévy-Feller advection-dispersion equation, Bull. Malays. Math. Soc. (2018)
[42] Sweilam, N. H.; AL-Mekhlafi, S. M., Numerical study for multi-strain tuberculosis(TB) model of variable-order fractional derivatives, JARE, 7, 2, 271-283 (2016)
[43] Sweilam, N. H.; AL-Mekhlafi, S. M., Optimal control for a time delay multi-strain tuberculosis fractional model: a numerical approach, IMA J. Math. Control Inf., 36, 1, 317-340 (2019) · Zbl 1417.92198
[44] Sweilam, N. H.; Abou Hasan, M. M.; Baleanu, D., New studies for general fractional financial models of awareness and trial advertising decisions, Chaos Solitons Fractals, 104, 772-784 (2017) · Zbl 1380.90148
[45] Sweilam, N. H.; AL-Mekhlafi, S. M.; Baleanu, D., Efficient numerical treatments for a fractional optimal control nonlinear tuberculosis model, Int. J. Biomath., 11, 8 (2018) · Zbl 1407.65226
[46] Sweilam, N. H.; Al-Mekhlafi, S. M.; Albalawi, A. O., A novel variable-order fractional nonlinear Klein Gordon model: a numerical approach, Numer. Methods Partial Differ. Equ., 1, 13 (2019) · Zbl 1425.65091
[47] Sweilam, N. H.; Rihan, F. A.; AL-Mekhlafi, S. M., A fractional-order delay differential model with optimal control for cancer treatment based on synergy between anti-angiogenic and immune cell therapies, Discrete Contin. Dyn. Syst. Ser. (2019)
[48] Sweilam, N. H.; AL-Mekhlafi, S. M.; Alshomrani, A. S.; Baleanu, D., Comparative study for optimal control nonlinear variable-order fractional tumor model, Chaos Solitons Fractals, 136 (2020) · Zbl 1489.92072
[49] Van den Driessche, P.; Watmough, J., Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Bios., 180, 29-48 (2002) · Zbl 1015.92036
[50] Van der Houwen, P. J.; Sommeijer, B. P.; Baker, C. T.H., On the stability of predictor-corrector methods for parabolic equations with delay, IMA J. Numer. Anal., 6, 1 (1986) · Zbl 0623.65094
[51] Volterra, V., Variazioni e fluttuazioni del numero d’individui in specie animali conviventi, Mem. R. Accad. Naz. Lincei, 2, 31-113 (1926) · JFM 52.0450.06
[52] Zhang, H.; Liu, F.; Phanikumar, M. S.; Meerschaert, M. M., A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model, Comput. Math. Appl., 66, 5, 693-701 (2013) · Zbl 1350.65092
[53] Zuo, L.; Liu, M., Effect of awareness programs on the epidemic outbreaks with time delay, Abstr. Appl. Anal., 8, Article 94041 pp. (2014) · Zbl 1406.92651
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.