×

A mathematical model of the treatment and survival of patients with high-grade brain tumours. (English) Zbl 1451.92169

Summary: More years of life per patient are lost as the result of primary brain tumours than any other form of cancer. The most aggressive of these is known as glioblastoma (GBM). The median survival time of patients with GBM is under 10 months and the outlook has hardly improved over the past 20 years. Generally, these tumours are remarkably resistant to radiotherapy and yet about 2-3% of all GBMs appear to be cured.
The objectives of this study were to formulate a mathematical and phenomenological model of tumour growth in a population of patients with GBM to predict survival, and to use the model to extract biological information from clinical data.
The model describes the growth of the tumour and the resulting damage to the normal brain using simple concepts borrowed from chemical reaction engineering. Death is assumed to result when the amount of surviving normal brain falls to a critical level. Radiotherapy is assumed to destroy tumour but not healthy brain. Simple rules are included to represent approximately the clinician’s decisions about what type of treatment to offer each patient. A population of patients is constructed by assuming that key parameters can be sampled from statistical distributions. Following Monte Carlo simulation, the model can be fitted to data from clinical trials.
The model reproduces clinical data extremely accurately. This suggests that the long-term survivors are not a separate sub-population but are the ‘lucky tail’ of a unimodal distribution. The estimated values of radiation sensitivity (represented as SF2, the survival fraction after 2Gy) suggest the presence of severe hypoxia, which renders cells less sensitive to radiation. The model can predict the probable age distribution of tumours at presentation. The model shows the complicated effects of waiting times for treatment on the survival outcomes, and is used to predict the effects of escalation of radiotherapy dose.
The model may aid the design of clinical trials using radiotherapy for patients with GBM, especially in helping to estimate the size of trial required. It is also designed in a generic form, and might be applicable to other tumour types.

MSC:

92C50 Medical applications (general)
92-10 Mathematical modeling or simulation for problems pertaining to biology
Full Text: DOI

References:

[1] Alarcon, T.; Byrne, H. M.; Maini, P. K., A cellular automaton model for tumour growth in inhomogeneous environment, J. Theor. Biol., 225, 2, 257-274 (2003) · Zbl 1464.92060
[2] Alarcon, T.; Byrne, H. M.; Maini, P. K., A multiple scale model for tumor growth, Multiscale Model. Simul., 3, 2, 440-475 (2005) · Zbl 1107.92019
[3] Antipas, V. P.; Stamatakos, G. S.; Uzunoglu, N. K.; Dionysiou, D. D.; Dale, R. G., A spatio-temporal simulation model of the response of solid tumours to radiotherapy in vivo: parametric validation concerning oxygen enhancement ratio and cell cycle duration, Phys. Med. Biol., 49, 8, 1485-1504 (2004)
[4] Bjork-Eriksson, T.; West, C. M.; Karlsson, E.; Slevin, N. J.; Davidson, S. E.; James, R. D.; Mercke, C., The in vitro radiosensitivity of human head and neck cancers, Br. J. Cancer, 77, 12, 2371-2375 (1998)
[5] Burnet, N. G.; Jefferies, S. J.; Benson, R. J.; Hunt, D. P.; Treasure, F. P., Years of life lost (YLL) from cancer is an important measure of population burden—and should be considered when allocating research funds, Br. J. Cancer, 92, 241-245 (2005)
[6] Burnet, N. G.; Jena, R.; Jefferies, S. J.; Stenning, S. P.; Kirkby, N. F., Mathematical modelling of survival of glioblastoma patients suggests a role for radiotherapy dose escalation and predicts poorer outcome following delay to start treatment, Clin. Oncol., 18, 2, 93-103 (2006)
[7] Byrne, H. M.; Chaplain, M. A., Mathematical models for tumour angiogenesis: numerical simulations and non-linear wave solutions, Bull. Math. Biol., 57, 3, 461-486 (1995) · Zbl 0812.92011
[8] Chaplain, M. A., Mathematical modelling of angiogenesis, J. Neurooncol., 50, 1-2, 37-51 (2000)
[9] Deacon, J.; Peckham, M. J.; Steel, G. G., The radioresponsiveness of human tumours and the initial slope of the cell survival curve, Radiother. Oncol., 2, 4, 317-323 (1984), (Review)
[10] Dionysiou, D. D.; Stamatakos, G. S.; Uzunoglu, N. K.; Nikita, K. S.; Marioli, A., A four-dimensional simulation model of tumour response to radiotherapy in vivo: parametric validation considering radio sensitivity, genetic profile and fractionation, J. Theor. Biol., 230, 1, 1-20 (2004) · Zbl 1447.92194
[11] Frank, S.; Müller, J.; Bonk, C.; Haroske, G.; Schackert, H. K.; Schackert, G., Transmission of glioblastoma multiforme through liver transplantation, Lancet, 352, 9121, 31 (1998)
[12] Jena, R.; Price, S. J.; Baker, C.; Jefferies, S. J.; Pickard, J. D.; Gillard, J. H.; Burnet, N. G., Diffusion tensor imaging: possible implications for radiotherapy treatment planning of patients with high grade glioma, Clin. Oncol., 17, 8, 581-590 (2005)
[13] Kaplan, E. L.; Meier, P., Nonparametric estimation from incomplete observations, J. Am. Statist. Assoc., 53, 457-481 (1958) · Zbl 0089.14801
[14] Kirkby, N. F.; Burnet, N. G.; Faraday, D. B.F., Mathematical modelling of the response of tumour cells to radiotherapy, Nucl. Instrum. Methods: Phys. Res. B, 188, 210-215 (2002)
[15] Kirkby, N. F.; Faraday, D. B.F.; Short, S. C.; Woodcock, M.; Joiner, M. C.; Burnet, N. G., Mathematical modelling to develop a novel radiotherapy schedule for high-grade brain tumours, based on phase distribution of low-dose hypersensitivity in human glioma cell lines, Radiother. Oncol., 64, Suppl. 1, S57 (2002)
[16] Kirkby, N. F.; Jena, R.; Jefferies, S. J.; Stenning, S. P.; Burnet, N. G., Monte Carlo modelling as an aid to clinical trial design: examples from glioblastoma, Clin. Oncol., 17, Suppl. 1, S18 (2005)
[17] Levine, H. A.; Sleeman, B. D.; Nilsen-Hamilton, M., Mathematical modeling of the onset of capillary formation initiating angiogenesis, J. Math Biol., 42, 3, 195-238 (2001) · Zbl 0977.92013
[18] Murray, J. D., Growth and control of brain tumours, (Mathematical Biology II: Spatial and Biomedical Applications (2003), Springer: Springer New York), 536-613 · Zbl 1006.92002
[19] Old, S. E.; Burnet, N. G.; Waite, K. J., Transmission of tumours by liver transplantation, Lancet, 352, 9130, 822 (1998)
[20] Peacock, J.; Ashton, A.; Bliss, J.; Bush, C.; Eady, J.; Jackson, C.; Owen, R.; Regan, J.; Yarnold, J., Cellular radiosensitivity and complication risk after curative radiotherapy, Radiother. Oncol., 55, 2, 173-178 (2000)
[21] Press, W. H.; Tenkolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Fortran Numerical Recipes in Fortran 90 (1996), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0892.65001
[22] Rampling, R.; Cruickshank, G.; Lewis, A. D.; Fitzsimmons, S. A.; Workman, P., Direct measurement of pO_2 distribution and bioreductive enzymes in human malignant brain tumors, Int. J. Radiat. Oncol. Biol. Phys., 29, 3, 427-431 (1994)
[23] Saunders, M.; Dische, S.; Barrett, A.; Harvey, A.; Gibson, D.; Parmar, M., Continuous hyperfractionated accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small-cell lung cancer: a randomized multi-centre trial, Lancet, 350, 161-165 (1997)
[24] Radiotherapy for cancer, Acta Oncol., Suppl. 6 (1996)
[25] Silverman, B.W., 1998. Density estimation for statistics and data analysis. Monographs on Statistics and Applied Probability 26. Chapman & Hall/CRC, Boca Raton, FL, USA. ISBN:0-412-24620-1.
[26] Stupp, R.; Mason, W. P.; van den Bent, M. J.; Weller, M.; Fisher, B.; Taphoorn, M. J.; Belanger, K.; Brandes, A. A.; Marosi, C.; Bogdahn, U.; Curschmann, J.; Janzer, R. C.; Ludwin, S. K.; Gorlia, T.; Allgeier, A.; Lacombe, D.; Cairncross, J. G.; Eisenhauer, E.; Mirimanoff, R. O., Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma, N. Engl. J. Med., 352, 10, 987-996 (2005)
[27] Swanson, K. R.; Alvord, E. C.; Murray, J. D., Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy, Br. J. Cancer, 86, 14-18 (2002)
[28] Taghian, A.; Ramsay, J.; Allalunis-Turner, J.; Budach, W.; Gioioso, D.; Pardo, F.; Okunieff, P.; Bleehen, N.; Urtasun, R.; Suit, H., Intrinsic radiation sensitivity may not be the major determinant of the poor clinical outcome of glioblastoma multiforme, Int. J. Radiat. Oncol. Biol. Phys., 25, 2, 243-249 (1993)
[29] Taghian, A.; DuBois, W.; Budach, W.; Baumann, M.; Freeman, J.; Suit, H., In vivo radiation sensitivity of glioblastoma multiforme, Int. J. Radiat. Oncol. Biol. Phys., 32, 1, 99-104 (1995)
[30] Waite, K. J.; Wharton, S. B.; Old, S. E.; Burnet, N. G., Systemic metastases of glioblastoma multiforme, Clin. Oncol., 11, 3, 205-207 (1999)
[31] West, C. M.; Davidson, S. E.; Roberts, S. A.; Hunter, R. D., Intrinsic radiosensitivity and prediction of patient response to radiotherapy for carcinoma of the cervix, Br. J. Cancer, 68, 4, 819-823 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.