×

D3-brane loop amplitudes from M5-brane tree amplitudes. (English) Zbl 1451.83103

Summary: We study loop corrections to scattering amplitudes in the world-volume theory of a probe D3-brane, which is described by the supersymmetric Dirac-Born-Infeld theory. We show that the D3-brane loop superamplitudes can be obtained from the tree-level superamplitudes in the world-volume theory of a probe M5-brane (or D5-brane). The M5-brane theory describes self-interactions of an abelian tensor supermultiplet with \((2, 0)\) supersymmetry, and the tree-level superamplitudes are given by a twistor formula. We apply the construction to the maximally-helicity-violating (MHV) amplitudes in the D3- brane theory at one-loop order, which are purely rational terms (except for the four-point amplitude). The results are further confirmed by generalised unitarity methods. Through a supersymmetry reduction on the M5-brane tree-level superamplitudes, we also construct one-loop corrections to the non-supersymmetric D3-brane amplitudes, which agree with the known results in the literature.

MSC:

83E30 String and superstring theories in gravitational theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81U05 \(2\)-body potential quantum scattering theory

References:

[1] M. Aganagic, C. Popescu and J.H. Schwarz, Gauge invariant and gauge fixed D-brane actions, Nucl. Phys. B495 (1997) 99 [hep-th/9612080] [INSPIRE]. · Zbl 0935.81053
[2] M. Cederwall, A. von Gussich, B.E.W. Nilsson and A. Westerberg, The Dirichlet super three-brane in ten-dimensional type IIB supergravity, Nucl. Phys. B490 (1997) 163 [hep-th/9610148] [INSPIRE]. · Zbl 0925.83089
[3] M. Aganagic, C. Popescu and J.H. Schwarz, D-brane actions with local kappa symmetry, Phys. Lett. B393 (1997) 311 [hep-th/9610249] [INSPIRE]. · Zbl 0935.81053
[4] M. Cederwall, A. von Gussich, B.E.W. Nilsson, P. Sundell and A. Westerberg, The Dirichlet super p-branes in ten-dimensional type IIA and IIB supergravity, Nucl. Phys. B490 (1997) 179 [hep-th/9611159] [INSPIRE]. · Zbl 0925.83090
[5] E. Bergshoeff and P.K. Townsend, Super D-branes, Nucl. Phys. B490 (1997) 145 [hep-th/9611173] [INSPIRE]. · Zbl 0925.81248
[6] E. Bergshoeff, F. Coomans, R. Kallosh, C.S. Shahbazi and A. Van Proeyen, Dirac-Born-Infeld-Volkov-Akulov and deformation of supersymmetry, JHEP08 (2013) 100 [arXiv:1303.5662] [INSPIRE]. · Zbl 1342.81549
[7] M. Heydeman, J.H. Schwarz and C. Wen, M5-brane and D-brane scattering amplitudes, JHEP12 (2017) 003 [arXiv:1710.02170] [INSPIRE]. · Zbl 1383.81166
[8] F. Cachazo, A. Guevara, M. Heydeman, S. Mizera, J.H. Schwarz and C. Wen, The S matrix of 6D super Yang-Mills and maximal supergravity from rational maps, JHEP09 (2018) 125 [arXiv:1805.11111] [INSPIRE]. · Zbl 1398.81255
[9] M. Heydeman, J.H. Schwarz, C. Wen and S.-Q. Zhang, All tree amplitudes of 6D (2, 0) supergravity: interacting tensor multiplets and the K 3 moduli space, Phys. Rev. Lett.122 (2019) 111604 [arXiv:1812.06111] [INSPIRE].
[10] Y. Geyer and L. Mason, Polarized scattering equations for 6d superamplitudes, Phys. Rev. Lett.122 (2019) 101601 [arXiv:1812.05548] [INSPIRE].
[11] G. Albonico, Y. Geyer and L. Mason, Recursion and worldsheet formulae for 6d superamplitudes, arXiv:2001.05928 [INSPIRE].
[12] Y. Geyer and L. Mason, Supersymmetric S-matrices from the worldsheet in 10&11d, Phys. Lett. B804 (2020) 135361 [arXiv:1901.00134] [INSPIRE]. · Zbl 1435.83202
[13] J.H. Schwarz, M5-brane amplitudes, arXiv:2001.03793 [INSPIRE]. · Zbl 1383.81166
[14] J.H. Schwarz and C. Wen, Unified formalism for 6d superamplitudes based on a symplectic Grassmannian, JHEP08 (2019) 125 [arXiv:1907.03485] [INSPIRE]. · Zbl 1421.81145
[15] E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys.252 (2004) 189 [hep-th/0312171] [INSPIRE]. · Zbl 1105.81061
[16] R. Roiban, M. Spradlin and A. Volovich, On the tree level S matrix of Yang-Mills theory, Phys. Rev. D70 (2004) 026009 [hep-th/0403190] [INSPIRE]. · Zbl 1173.81326
[17] A.A. Rosly and K.G. Selivanov, Helicity conservation in Born-Infeld theory, in Workshop on string theory and complex geometry, (2002) [hep-th/0204229] [INSPIRE].
[18] C. Cheung, K. Kampf, J. Novotny and J. Trnka, Effective field theories from soft limits of scattering amplitudes, Phys. Rev. Lett.114 (2015) 221602 [arXiv:1412.4095] [INSPIRE].
[19] C. Cheung, K. Kampf, J. Novotny, C.-H. Shen and J. Trnka, A periodic table of effective field theories, JHEP02 (2017) 020 [arXiv:1611.03137] [INSPIRE]. · Zbl 1377.81123
[20] C. Cheung, K. Kampf, J. Novotny, C.-H. Shen and J. Trnka, On-shell recursion relations for effective field theories, Phys. Rev. Lett.116 (2016) 041601 [arXiv:1509.03309] [INSPIRE].
[21] H. Lüo and C. Wen, Recursion relations from soft theorems, JHEP03 (2016) 088 [arXiv:1512.06801] [INSPIRE].
[22] C. Cheung, K. Kampf, J. Novotny, C.-H. Shen, J. Trnka and C. Wen, Vector effective field theories from soft limits, Phys. Rev. Lett.120 (2018) 261602 [arXiv:1801.01496] [INSPIRE].
[23] L. Rodina, Scattering amplitudes from soft theorems and infrared behavior, Phys. Rev. Lett.122 (2019) 071601 [arXiv:1807.09738] [INSPIRE].
[24] C. Cheung, C.-H. Shen and C. Wen, Unifying relations for scattering amplitudes, JHEP02 (2018) 095 [arXiv:1705.03025] [INSPIRE]. · Zbl 1387.81264
[25] S. He, Z. Liu and J.-B. Wu, Scattering equations, twistor-string formulas and double-soft limits in four dimensions, JHEP07 (2016) 060 [arXiv:1604.02834] [INSPIRE]. · Zbl 1390.81629
[26] F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett.113 (2014) 171601 [arXiv:1307.2199] [INSPIRE]. · Zbl 1391.81198
[27] F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and gravitons, JHEP07 (2014) 033 [arXiv:1309.0885] [INSPIRE]. · Zbl 1391.81198
[28] L. Mason and D. Skinner, Ambitwistor strings and the scattering equations, JHEP07 (2014) 048 [arXiv:1311.2564] [INSPIRE].
[29] T. Adamo, E. Casali and D. Skinner, Ambitwistor strings and the scattering equations at one loop, JHEP04 (2014) 104 [arXiv:1312.3828] [INSPIRE]. · Zbl 1304.81146
[30] Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, Loop integrands for scattering amplitudes from the Riemann sphere, Phys. Rev. Lett.115 (2015) 121603 [arXiv:1507.00321] [INSPIRE]. · Zbl 1388.81906
[31] Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, One-loop amplitudes on the Riemann sphere, JHEP03 (2016) 114 [arXiv:1511.06315] [INSPIRE]. · Zbl 1388.81906
[32] S. He and E.Y. Yuan, One-loop scattering equations and amplitudes from forward limit, Phys. Rev. D92 (2015) 105004 [arXiv:1508.06027] [INSPIRE].
[33] F. Cachazo, S. He and E.Y. Yuan, One-loop corrections from higher dimensional tree amplitudes, JHEP08 (2016) 008 [arXiv:1512.05001] [INSPIRE]. · Zbl 1390.81416
[34] S. Caron-Huot, Loops and trees, JHEP05 (2011) 080 [arXiv:1007.3224] [INSPIRE]. · Zbl 1296.81128
[35] Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, Two-loop scattering amplitudes from the Riemann sphere, Phys. Rev. D94 (2016) 125029 [arXiv:1607.08887] [INSPIRE]. · Zbl 1388.81906
[36] Y. Geyer and R. Monteiro, Two-loop scattering amplitudes from ambitwistor strings: from genus two to the nodal Riemann sphere, JHEP11 (2018) 008 [arXiv:1805.05344] [INSPIRE]. · Zbl 1404.83117
[37] Y. Geyer, R. Monteiro and R. Stark-Muchão, Two-loop scattering amplitudes: double-forward limit and colour-kinematics duality, JHEP12 (2019) 049 [arXiv:1908.05221] [INSPIRE]. · Zbl 1431.81159
[38] L.J. Dixon, Calculating scattering amplitudes efficiently, in Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 95): QCD and beyond, (1996), pg. 539 [hep-ph/9601359] [INSPIRE].
[39] H. Elvang and Y.-T. Huang, Scattering amplitudes, arXiv:1308.1697 [INSPIRE]. · Zbl 1332.81010
[40] H. Elvang, M. Hadjiantonis, C.R.T. Jones and S. Paranjape, All-multiplicity one-loop amplitudes in Born-Infeld electrodynamics from generalized unitarity, JHEP03 (2020) 009 [arXiv:1906.05321] [INSPIRE]. · Zbl 1435.81119
[41] C. Cheung and D. O’Connell, Amplitudes and spinor-helicity in six dimensions, JHEP07 (2009) 075 [arXiv:0902.0981] [INSPIRE].
[42] R. Karpman and Y. Su, Combinatorics of symmetric plabic graphs, arXiv:1510.02122 [INSPIRE]. · Zbl 1378.05033
[43] R. Karpman, Total positivity for the Lagrangian Grassmannian, arXiv:1510.04386. · Zbl 1390.05247
[44] W.-M. Chen, Y.-T. Huang and C. Wen, Exact coefficients for higher dimensional operators with sixteen supersymmetries, JHEP09 (2015) 098 [arXiv:1505.07093] [INSPIRE]. · Zbl 1388.81792
[45] C. Baadsgaard, N.E.J. Bjerrum-Bohr, J.L. Bourjaily, S. Caron-Huot, P.H. Damgaard and B. Feng, New representations of the perturbative S-matrix, Phys. Rev. Lett.116 (2016) 061601 [arXiv:1509.02169] [INSPIRE]. · Zbl 1356.81208
[46] H. Gomez, Quadratic Feynman loop integrands from massless scattering equations, Phys. Rev. D95 (2017) 106006 [arXiv:1703.04714] [INSPIRE].
[47] H. Gomez, C. Lopez-Arcos and P. Talavera, One-loop Parke-Taylor factors for quadratic propagators from massless scattering equations, JHEP10 (2017) 175 [arXiv:1707.08584] [INSPIRE]. · Zbl 1383.83173
[48] N. Ahmadiniaz, H. Gomez and C. Lopez-Arcos, Non-planar one-loop Parke-Taylor factors in the CHY approach for quadratic propagators, JHEP05 (2018) 055 [arXiv:1802.00015] [INSPIRE]. · Zbl 1391.83101
[49] J. Agerskov, N.E.J. Bjerrum-Bohr, H. Gomez and C. Lopez-Arcos, Yang-Mills loop amplitudes from scattering equations, arXiv:1910.03602 [INSPIRE].
[50] Z. Bern, J.S. Rozowsky and B. Yan, Two loop four gluon amplitudes in N = 4 super Yang-Mills, Phys. Lett. B401 (1997) 273 [hep-ph/9702424] [INSPIRE].
[51] Z. Bern, L.J. Dixon, D.C. Dunbar, M. Perelstein and J.S. Rozowsky, On the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergences, Nucl. Phys. B530 (1998) 401 [hep-th/9802162] [INSPIRE].
[52] M.B. Green, J.H. Schwarz and L. Brink, N = 4 Yang-Mills and N = 8 supergravity as limits of string theories, Nucl. Phys. B198 (1982) 474 [INSPIRE].
[53] M. Shmakova, One loop corrections to the D3-brane action, Phys. Rev. D62 (2000) 104009 [hep-th/9906239] [INSPIRE].
[54] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B425 (1994) 217 [hep-ph/9403226] [INSPIRE]. · Zbl 1049.81644
[55] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B435 (1995) 59 [hep-ph/9409265] [INSPIRE]. · Zbl 1049.81644
[56] C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, D-dimensional unitarity cut method, Phys. Lett. B645 (2007) 213 [hep-ph/0609191] [INSPIRE].
[57] Z. Bern and A.G. Morgan, Massive loop amplitudes from unitarity, Nucl. Phys. B467 (1996) 479 [hep-ph/9511336] [INSPIRE].
[58] A.L. Guerrieri, Y.-T. Huang, Z. Li and C. Wen, On the exactness of soft theorems, JHEP12 (2017) 052 [arXiv:1705.10078] [INSPIRE]. · Zbl 1383.81323
[59] R. Huang, Q. Jin, J. Rao, K. Zhou and B. Feng, The Q-cut representation of one-loop integrands and unitarity cut method, JHEP03 (2016) 057 [arXiv:1512.02860] [INSPIRE].
[60] R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett.94 (2005) 181602 [hep-th/0501052] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.