×

Affine-periodic solutions for impulsive differential systems. (English) Zbl 1451.34052

In the paper, the existence of affine-periodic solutions for impulsive differential systems of the form \begin{align*} &x'=f(t,x);\qquad\quad t\ne\tau_i(x),\\ &\Delta x(t)=I_i(x);\qquad t=\tau_i(x)\quad (i\in{\mathbb Z}) \end{align*} are discussed which is a new periodic concept which has been founded in recent years. It was first introduced by Zhang et al., which describes those natural phenomena that exhibit certain symmetry in space rather than periodicity in time. The existence of affine-periodic solutions for such equations, for instance, dissipative systems and nonlinear systems on time scales etc, was discussed in (see [Y. Li and F. Huang, Adv. Nonlinear Stud. 15, No. 1, 241–252 (2015; Zbl 1351.34047); C. Wang and Y. Li, Adv. Difference Equ. 2015, Paper No. 286, 16 p. (2015; Zbl 1351.34110); C. Wang et al., Rocky Mt. J. Math. 46, No. 5, 1717–1737 (2016; Zbl 1370.34067); Acta Math. Appl. Sin., Engl. Ser. 31, No. 2, 307–312 (2015; Zbl 1328.34035)]). Further, to know about the recent work, it is referred to [G. Liu et al., “Existence and multiplicity of rotating periodic solutions for resonant hamiltonian systems”, J. Differ. Equ. 265, No. 4, 1324–1352 (2018; doi:10.1016/j.jde.2018.04.001); “Rotating periodic solutions for super-linear second order hamiltonian systems”, Appl. Math. Lett. Volume 79, 73–79 (2018; doi:10.1016/j.aml.2017.11.024); T. Shen and W. Liu, Appl. Math. Lett. 88, 164–170 (2019; Zbl 1406.37047); J. Xing et al., Appl. Math. Lett. 89, 91–96 (2019; Zbl 1472.37066)].
Several existence theorems are proved for dissipative impulsive (functional) differential systems. Some applications are also given by combining Lyapunov’s methods.

MSC:

34C25 Periodic solutions to ordinary differential equations
34A37 Ordinary differential equations with impulses
47H10 Fixed-point theorems
Full Text: DOI

References:

[1] Burton, Ta; Zhang, S., Unified boundedness, periodicity, and stability in ordinary and functional differential equations, Annali di Matematica pura ed applicata, 145, 1, 129-158 (1986) · Zbl 0626.34038 · doi:10.1007/BF01790540
[2] Horn, Wa, Some fixed point theorems for compact maps and flows in banach spaces, Trans. Am. Math. Soc., 149, 2, 391-404 (1970) · Zbl 0201.46203 · doi:10.2307/1995402
[3] Lakshmikantham, V.; Bainov, Dd; Simeonov, Ps, Theory of Impulsive Differential Equations (1989), Singapore: World Scientific, Singapore · Zbl 0719.34002
[4] Levinson, N., Transformation theory of non-linear differential equations of the second order, Ann. Math., 45, 4, 723-737 (1944) · Zbl 0061.18910 · doi:10.2307/1969299
[5] Li, X.; Bohner, M.; Wang, C., Impulsive differential equations: periodic solutions and applications, Automatica, 52, 173-178 (2015) · Zbl 1309.93074 · doi:10.1016/j.automatica.2014.11.009
[6] Li, Y.; Huang, F., Levinsons problem on affine-periodic solutions, Adv. Nonlinear Stud., 15, 1, 241-252 (2015) · Zbl 1351.34047 · doi:10.1515/ans-2015-0113
[7] Li, Y.; Zhou, Q., Periodic solutions to ordinary differential equations with impulses, Sci. China Ser. A, 36, 7, 778-790 (1993) · Zbl 0787.34015
[8] Liu, G.; Yang, X.; Li, Y., Existence and multiplicity of rotating periodic solutions for resonant hamiltonian systems, J. Differ. Equ. (2018) · Zbl 1524.37055 · doi:10.1016/j.jde.2018.04.001
[9] Liu, G.; Yang, X.; Li, Y., Rotating periodic solutions for super-linear second order hamiltonian systems, Appl. Math. Lett. (2018) · Zbl 1461.37065 · doi:10.1016/j.aml.2017.11.024
[10] Milman, Vd; Myshkis, Ad, On the stability of motion in the presence of impulses, Sib. Math. J., 1, 2, 233-237 (1960) · Zbl 1358.34022
[11] Qian, D.; Chen, L.; Sun, X., Periodic solutions of superlinear impulsive differential equations: a geometric approach, J. Differ. Equ., 258, 9, 3088-3106 (2015) · Zbl 1348.34041 · doi:10.1016/j.jde.2015.01.003
[12] Shen, J.; Li, J.; Wang, Q., Boundedness and periodicity in impulsive ordinary and functional differential equations, Nonlinear Anal. TMA, 65, 10, 1986-2002 (2006) · Zbl 1120.34005 · doi:10.1016/j.na.2005.11.006
[13] Shen, T.; Liu, W., Infinitely many rotating periodic solutions for suplinear second-order impulsive Hamiltonian systems, Appl. Math. Lett. (2019) · Zbl 1406.37047 · doi:10.1016/j.aml.2018.08.026
[14] Wang, C.; Li, Y., Affine-periodic solutions for nonlinear dynamic equations on time scales, Adv. Differ. Equ., 2015, 1, 286 (2015) · Zbl 1351.34110 · doi:10.1186/s13662-015-0634-0
[15] Wang, C.; Yang, X.; Li, Y., Affine-periodic solutions for nonlinear differential equations, Rocky Mt. J. Math., 46, 5, 1717-1737 (2016) · Zbl 1370.34067 · doi:10.1216/RMJ-2016-46-5-1717
[16] Wang, H.; Yang, X.; Li, Y., Rotating-symmetric solutions for nonlinear systems with symmetry, Acta Math. Appl. Sin. Engl. Ser., 31, 2, 307-312 (2015) · Zbl 1328.34035 · doi:10.1007/s10255-015-0484-2
[17] Xing, J.; Yang, X.; Li, Y., Rotating periodic solutions for convex hamiltonian systems, Appl. Math. Lett. (2019) · Zbl 1472.37066 · doi:10.1016/j.aml.2018.10.002
[18] Yoshizawa, T., Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions (1975), New York: Springer, New York · Zbl 0304.34051
[19] Zhang, X.; Yan, J.; Zhan, A., Existence of positive periodic solutions for an impulsive differential equation, Nonlinear Anal. TMA, 68, 10, 3209-3216 (2008) · Zbl 1141.34345 · doi:10.1016/j.na.2007.03.014
[20] Zhang, Y.; Yang, X.; Li, Y., Affine-periodic solutions for dissipative systems, Abstr. Appl. Anal. (2013) · Zbl 1303.34033 · doi:10.1155/2013/157140
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.