×

Stationary distribution and ergodicity of a stochastic cholera model with multiple pathways of transmission. (English) Zbl 1450.92075

Summary: A stochastic compartmental model for cholera is investigated, which incorporates the effect of two transmission pathways on the diseases via contaminated water. Multiple stages of infection and multiple states of pathogen and environmental white noises are considered, which include or extend the cholera models in some existing articles. The existence of a unique stationary distribution and ergodicity of the model are obtained by using a suitable Lyapunov function, which determines a critical value \(R_0^*\) corresponding to a basic reproduction number \(R_0\) of the ordinary differential equation. The results mean if \(R_0^*>1\), the system still retains the stability and all individuals are persistent in a long term. In addition, the sufficient conditions for extinction of diseases are derived. What’s more, we provide a new method in constructing a Lyapunov function, which can be successfully applied to other complex high-dimensional systems.

MSC:

92D30 Epidemiology
34F05 Ordinary differential equations and systems with randomness
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
Full Text: DOI

References:

[1] Andrews, J. R.; Basu, S., Transmission dynamics and control of cholera in haiti: an epidemic model, Lancet, 377, 9773, 1248-1255 (2011)
[2] Capasso, V.; Paveri-Fontana, S., A mathematical model for the 1973 cholera epidemic in the european mediterranean region, Rev. Epid. San. Publ., 27, 121-132 (1979)
[3] Chao, D.; Longini, I.; Morris, J., Modeling Cholera Outbreaks. Current Topics in Microbiology Immunology (2013), Springer-Verlag: Springer-Verlag Berlin
[4] Codeco, C., Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir, BMC Infect. Dis., 1, 1:1 (2001)
[5] Gray, A.; Greenhalgh, D.; Mao, X.; Pan, J., The SIS epidemic model with markovian switching, J. Math. Anal. Appl., 394, 2, 496-516 (2012) · Zbl 1271.92030
[6] Hartley, D.; Morris, J.; Smith, D., Hyperinfectivity: A critical element in the ability of v.cholerae to cause epidemics?, PLos Med., 3, 1, 63-69 (2006)
[7] He, D.; Wang, X.; Gao, D.; Wang, J., Modeling the 2016-2017 Yemen Cholera outbreak with the impact of limited medical resources, J. Theor. Biol., 451, 80-85 (2018)
[8] Higham, D., An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43, 3, 525-546 (2001) · Zbl 0979.65007
[9] Joh, R. I.; Wang, H.; Weiss, H.; Weitz, J. S., Dynamics of indirectly transmitted infectious diseases with immunological threshold, Bull. Math. Biol., 71, 4, 845-862 (2009) · Zbl 1163.92026
[10] Khasminskii, R., Stochastic Stability of Differential Equations (1980), Alphen aan den Rijn-Germantown, Sijthoff Noordhoff · Zbl 0441.60060
[11] Lee, T. H.; Park, J. H.; Xu, S., Relaxed conditions for stability of time-varying delay systems, Automatica, 75, 11-15 (2017) · Zbl 1351.93122
[12] Liu, H.; Yang, Q.; Jiang, D., The asymptotic behavior of stochastically perturbed DI SIR epidemic models with saturated incidences, Automatica, 48, 5, 820-825 (2012) · Zbl 1246.93117
[13] Liu, M.; Bai, C.; Wang, K., Asymptotic stability of a two-group stochastic SEIR model with infinite delays, Commun. Nonlinear Sci. Numer. Simul., 19, 10, 3444-3453 (2014) · Zbl 1470.92322
[14] Liu, Q.; Jiang, D.; Hayat, T.; Alsaedi, A., Dynamical behavior of a stochastic epidemic model for cholera, J. Frankl. Inst.-Eng. Appl. Math., 356, 13, 7486-7514 (2019) · Zbl 1418.92179
[15] Liu, Q.; Jiang, D.; Shi, N.; Hayat, T.; Alsaedi, A., Stationary distribution and extinction of a stochastic SIRS epidemic model with standard incidence, Physica A, 469, 510-517 (2017) · Zbl 1400.92521
[16] Mao, X., Stochastic Differential Equations and Their Applications (1997), Horwood: Horwood Chichester · Zbl 0892.60057
[17] Mukandavire, Z.; Liao, S.; Wang, J.; Gaff, H.; Smith, D. L.; Morris, J. G., Estimating the reproductive numbers for the 2008-2009 cholera outbreaks in zimbabwe, Proc. Natl. Acad. Sci. USA, 108, 21, 8767-8772 (2011)
[18] Nelson, E. J.; Harris, J. B.; Morris, J. G.; Calderwood, S. B.; Camilli, A., Cholera transmission: the host, pathogen and bacteriophage dynamic, Nat. Rev. Microbiol., 7, 10, 693-702 (2009)
[19] Peng, S.; Zhu, X., Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations, Stoch. Process. Their Appl., 116, 3, 370-380 (2006) · Zbl 1096.60026
[20] Rajasekar, S. P.; Pitchaimani, M.; Zhu, Q., Dynamic threshold probe of stochastic SIR model with saturated incidence rate and saturated treatment function, Physica A, 535, 122300 (2019) · Zbl 07571189
[21] Rajasekar, S. P.; Pitchaimani, M.; Zhu, Q., Progressive dynamics of a stochastic epidemic model with logistic growth and saturated treatment, Physica A, 538, 122649 (2020) · Zbl 07571857
[22] Sekhar, A.; Kang, G., Pathways to a policy for cholera control in india, Vaccine, 38, A157-A159 (2020)
[23] Shuai, Z.; van den Driessche, P., Global dynamics of cholera models with differential infectivity, Math. Biosci., 234, 2, 118-126 (2011) · Zbl 1244.92040
[24] Snow, J., Snow on Cholera: Being a Reprint of Two Papers (1936), The Commonwealth Fund: The Commonwealth Fund New York
[25] Tian, J. P.; Wang, J., Global stability for cholera epidemic models, Math. Biosci., 232, 1, 31-41 (2011) · Zbl 1217.92068
[26] Tien, J. H.; Earn, D. J.D., Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bull. Math. Biol., 72, 6, 1506-1533 (2010) · Zbl 1198.92030
[27] Tuite, A. R.; Tien, J.; Eisenberg, M.; Earn, D. J.D.; Ma, J.; Fisman, D. N., Cholera epidemic in haiti, 2010: Using a transmission model to explain spatial spread of disease and identify optimal control interventions, Ann. Intern. Med., 154, 9, 593-601 (2011)
[28] Wang, B.; Zhu, Q., Stability analysis of semi-Markov switched stochastic systems, Automatica, 94, 72-80 (2018) · Zbl 1400.93325
[29] Wang, Y.; Karimi, H.; Lam, H.; Yan, H., Fuzzy output tracking control and filtering for nonlinear discrete-time descriptor systems under unreliable communication links, IEEE Trans. Cybern. (2019)
[30] Wang, Y.; Xia, Y.; Li, H.; Zhou, P., A new integral sliding mode design method for nonlinear stochastic systems, Automatica, 90, 304-309 (2018) · Zbl 1387.93106
[31] Wu, Z.; Karimi, H. R.; Dang, C., An approximation algorithm for graph partitioning via deterministic annealing neural network, Neural Netw., 117, 191-200 (2019) · Zbl 1434.68683
[32] Xie, X.; Yue, D.; Peng, C., Relaxed real-time scheduling stabilization of discrete-time Takagi-Sugeno fuzzy systems via an alterable-weights-based ranking switching mechanism, IEEE Trans. Fuzzy Syst., 26, 6, 3808-3819 (2018)
[33] Yang, Q.; Jiang, D.; Shi, N.; Ji, C., The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence, J. Math. Anal. Appl., 388, 1, 248-271 (2012) · Zbl 1231.92058
[34] Zhang, R.; Zeng, D.; Zhong, S., Novel master-slave synchronization criteria of chaotic lure systems with time delays using sampled-data control, J. Frankl. Inst., 354, 930-954 (2017)
[35] Zhou, Y.; Zhang, W.; Yuan, S., Survival and stationary distribution of a SIR epidemic model with stochastic perturbations, Appl. Math. Comput., 244, 118-131 (2014) · Zbl 1335.92109
[36] Zhu, Q., Stability analysis of stochastic delay differential equations with levy noise, Syst. Control Lett., 118, 62-68 (2018) · Zbl 1402.93260
[37] Zhu, Q., Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control, IEEE Trans. Autom. Control, 64, 9, 3764-3771 (2019) · Zbl 1482.93694
[38] Zuo, W.; Jiang, D., Stationary distribution and periodic solution for stochastic predator-prey systems with nonlinear predator harvesting, Commun. Nonlinear Sci. Numer. Simul., 36, 65-80 (2016) · Zbl 1470.92272
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.