×

An adaptive GDSW coarse space for two-level overlapping Schwarz methods in two dimensions. (English) Zbl 1450.65164

Bjørstad, Petter E. (ed.) et al., Domain decomposition methods in science and engineering XXIV. Proceedings of the 24th international conference, Svalbard, Norway, February 6–10, 2017. Cham: Springer. Lect. Notes Comput. Sci. Eng. 125, 373-382 (2018).
Summary: We propose robust coarse spaces for two-level overlapping Schwarz preconditioners, which are extensions of the energy minimizing coarse space known as GDSW (Generalized Dryja, Smith, Widlund). The resulting two-level methods with adaptive coarse spaces are robust for second order elliptic problems in two dimensions, even in presence of a highly heterogeneous coefficient function, and reduce to the standard GDSW algorithm if no additional coarse basis functions are used.
For the entire collection see [Zbl 1430.65002].

MSC:

65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
35J15 Second-order elliptic equations
35R05 PDEs with low regular coefficients and/or low regular data
Full Text: DOI

References:

[1] J. Aarnes, T.Y. Hou, Multiscale domain decomposition methods for elliptic problems with high aspect ratios. Acta Math. Appl. Sin. Engl. Ser. 18(1), 63-76 (2002) · Zbl 1003.65142 · doi:10.1007/s102550200004
[2] P. Bjørstad, J. Koster, P. Krzyzanowski, Domain decomposition solvers for large scale industrial finite element problems, in Applied Parallel Computing. New Paradigms for HPC in Industry and Academia. Lecture Notes in Computer Science, vol. 1947 (Springer, Berlin, 2001), pp. 373-383
[3] P. Bjørstad, P. Krzyzanowski, A flexible 2-level Neumann-Neumann method for structural analysis problems, in Parallel Processing and Applied Mathematics. Lecture Notes in Computer Science, vol. 2328 (Springer, Berlin, 2002), pp. 387-394 · Zbl 1057.65516
[4] M. Brezina, C. Heberton, J. Mandel, P. Vanek, An iterative method with convergence rate chosen a priori. Technical report, Denver, 1999
[5] M. Buck, O. Iliev, H. Andrä, Multiscale finite element coarse spaces for the application to linear elasticity. Cent. Eur. J. Math. 11(4), 680-701 (2013). https://doi.org/10.2478/s11533-012-0166-8 · Zbl 1352.74331 · doi:10.2478/s11533-012-0166-8
[6] T. Chartier, R.D. Falgout, V. Henson, J. Jones, T. Manteuffel, S. McCormick, J. Ruge, P.S. Vassilevski, Spectral AMGe (rhoamge). SIAM J. Sci. Comput. 25(01), 1-26 (2003) · Zbl 1057.65096 · doi:10.1137/S106482750139892X
[7] C.R. Dohrmann, A. Klawonn, O.B. Widlund, A family of energy minimizing coarse spaces for overlapping Schwarz preconditioners, in Domain Decomposition Methods in Science and Engineering XVII. Lecture Notes in Computer Science Engineering, vol. 60 (Springer, Berlin, 2008), pp. 247-254 · Zbl 1359.65289
[8] C.R. Dohrmann, A. Klawonn, O.B. Widlund, Domain decomposition for less regular subdomains: overlapping Schwarz in two dimensions. SIAM J. Numer. Anal. 46(4), 2153-2168 (2008) · Zbl 1183.65160 · doi:10.1137/070685841
[9] V. Dolean, Fr. Nataf, R. Scheichl, N. Spillane, Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps. Comput. Methods Appl. Math. 12(4), 391-414 (2012) · Zbl 1284.65050
[10] Y. Efendiev, J. Galvis, R. Lazarov, J. Willems, Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms. ESAIM Math. Model. Numer. Anal. 46(05), 1175-1199 (2012) · Zbl 1272.65098 · doi:10.1051/m2an/2011073
[11] J. Galvis, Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high-contrast media. Multisc. Model. Simul. 8(4), 1461-1483 (2010) · Zbl 1206.76042 · doi:10.1137/090751190
[12] M.J. Gander, A. Loneland, T. Rahman, Analysis of a new harmonically enriched multiscale coarse space for domain decomposition methods. Technical report, arxiv. Dec 2015
[13] I.G. Graham, P.O. Lechner, R. Scheichl, Domain decomposition for multiscale PDEs. Numer. Math. 106(4), 589-626 (2007) · Zbl 1141.65084 · doi:10.1007/s00211-007-0074-1
[14] A. Heinlein, U. Hetmaniuk, A. Klawonn, O. Rheinbach, The approximate component mode synthesis special finite element method in two dimensions: parallel implementation and numerical results. J. Comput. Appl. Math. 289, 116-133 (2015) · Zbl 1326.65160 · doi:10.1016/j.cam.2015.02.053
[15] A. Heinlein, A. Klawonn, J. Knepper, O. Rheinbach, Multiscale coarse spaces for overlapping Schwarz methods based on the ACMS space in 2D. Technical report Preprint 2016-09 at http://tu-freiberg.de/fakult1/forschung/preprints (2016, submitted) · Zbl 1448.65263
[16] A. Heinlein, A. Klawonn, J. Knepper, O. Rheinbach, Adaptive GDSW. Technical report (2018, in preparation)
[17] U. Hetmaniuk, R.B. Lehoucq, A special finite element method based on component mode synthesis. ESAIM: M2AN 44(3), 401-420 (2010) · Zbl 1190.65173
[18] J. Mandel, B. Sousedík, Adaptive selection of face coarse degrees of freedom in the BDDC and the FETI-DP iterative substructuring methods. Comput. Methods Appl. Mech. Eng. 196(8), 1389-1399 (2007) · Zbl 1173.74435 · doi:10.1016/j.cma.2006.03.010
[19] J. Mandel, B. Sousedík, J. Šístek, Adaptive BDDC in three dimensions. Math. Comput. Simul. 82(10), 1812-1831 (2012) · Zbl 1255.65225 · doi:10.1016/j.matcom.2011.03.014
[20] A.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.