×

Hybrid inertial accelerated algorithms for split fixed point problems of demicontractive mappings and equilibrium problems. (English) Zbl 1450.65048

Summary: Our contribution in this paper, we introduce and analyze two new hybrid algorithms by combining Mann iteration and inertial method for solving split fixed point problems of demicontractive mappings and equilibrium problems in a real Hilbert space. By using a new technique of choosing step size, our algorithms do not need any prior information on the operator norm. In fact, an inertial type algorithm was proposed in order to accelerate its convergence rate. We then prove weak and strong convergence of proposed methods under some control conditions. Moreover, some numerical experiments for image restoration problems and oligopolistic market equilibrium problems are also provided for supporting our main results.

MSC:

65J20 Numerical solutions of ill-posed problems in abstract spaces; regularization
65J22 Numerical solution to inverse problems in abstract spaces
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
Full Text: DOI

References:

[1] Alvarez, F.; Attouch, H., An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9, 3-11 (2001) · Zbl 0991.65056 · doi:10.1023/A:1011253113155
[2] Anh, PN; Le Thi, HA, An Armijo-type method for pseudomonotone equilibrium problems and its applications, J. Glob. Optim., 57, 803-820 (2013) · Zbl 1285.65040 · doi:10.1007/s10898-012-9970-8
[3] Anh, PN; Muu, LD; Nguyen, VH; Strodiot, JJ, Using the Banach contraction principle to implement the proximal point method for multivalued monotone variational inequalities, J. Optim Theory Appl., 124, 285-306 (2005) · Zbl 1062.49005 · doi:10.1007/s10957-004-0926-0
[4] Bauschke, HH; Combettes, PL, Convex Analysis and Monotone Operator Theory in Hilbert Spaces (2017), Berlin: Springer, Berlin · Zbl 1359.26003
[5] Beck, A.; Teboulle, M., A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2, 183-202 (2009) · Zbl 1175.94009 · doi:10.1137/080716542
[6] Blum, E.; Oettli, W., From optimization and variational inequalities to equilibrium problems, Math. Stud., 63, 1-23 (1993)
[7] Byrne, C., Iterative oblique projection onto convex subsets ant the split feasibility problem, Inverse Probl., 18, 441-453 (2002) · Zbl 0996.65048 · doi:10.1088/0266-5611/18/2/310
[8] Byrne, C.; Censor, Y.; Gibali, A.; Reich, S., The split common null point problem, J. Nonlinear Convex Anal., 13, 759-775 (2012) · Zbl 1262.47073
[9] Ceng, LC; Yao, JC, A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math., 214, 186-201 (2008) · Zbl 1143.65049 · doi:10.1016/j.cam.2007.02.022
[10] Censor, Y.; Bortfeld, T.; Martin, B.; Trofimov, A., A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol., 51, 2353-2365 (2006) · doi:10.1088/0031-9155/51/10/001
[11] Censor, Y.; Elfving, T., A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms., 8, 221-239 (1994) · Zbl 0828.65065 · doi:10.1007/BF02142692
[12] Censor, Y.; Elfving, T.; Kopf, N.; Bortfeld, T., The multiple set split feasibility problem and its applications, Inverse Problems., 21, 2071-2084 (2005) · Zbl 1089.65046 · doi:10.1088/0266-5611/21/6/017
[13] Censor, Y.; Gibali, A.; Reich, S., Algorithm for the split variational inequality problem, Numerical Algorithms, 59, 301-323 (2012) · Zbl 1239.65041 · doi:10.1007/s11075-011-9490-5
[14] Censor, Y.; Motova, A.; Segal, A., Perturbed projections and subgradient projections for the multiple-sets feasibility problem, J. Math. Anal., 327, 1244-1256 (2007) · Zbl 1253.90211 · doi:10.1016/j.jmaa.2006.05.010
[15] Censor, Y.; Segal, A., The split common fixed point problem for directed operators, J. Convex Anal., 16, 587-600 (2009) · Zbl 1189.65111
[16] Chuang, CS, Hybrid inertial proximal algorithm for the split variational inclusion problem in Hilbert spaces with applications, Optimization., 66, 777-792 (2017) · Zbl 1373.49017 · doi:10.1080/02331934.2017.1306744
[17] Combettes, PL; Hirstoaga, A., Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6, 117-136 (2005) · Zbl 1109.90079
[18] Cui, H.; Wang, F., Iterative methods for the split common fixed point problem in a Hilbert spaces, Fixed Point Theory Appl., 2014, 78 (2014) · Zbl 1332.47041 · doi:10.1186/1687-1812-2014-78
[19] Dafermos, S., Exchange price equilibria and variational inequalities, Math. Progam., 46, 391-402 (1990) · Zbl 0709.90013 · doi:10.1007/BF01585753
[20] Farajzadeh, AP; Zafarani, J., Equilibrium problem and variational inequalities in topological vector space, Optimization, 59, 4, 485-499 (2010) · Zbl 1235.47060 · doi:10.1080/02331930801951090
[21] Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York (1984) · Zbl 0537.46001
[22] Iusem, A.; Sosa, W., New existence results for equilibrium problems, Nonlinear Anal., 52, 621-635 (2003) · Zbl 1017.49008 · doi:10.1016/S0362-546X(02)00154-2
[23] Konnov, I., Combined Relaxation Methods for Variational Inequalities (2001), New York: Springer, New York · Zbl 1044.49004
[24] Mainge, PE, Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 325, 469-479 (2007) · Zbl 1111.47058 · doi:10.1016/j.jmaa.2005.12.066
[25] Masad, E.; Reich, S., A note on the multiple-set split convex feasibility problem in Hilbert space, J. Nonlinear Convex Anal., 8, 367-371 (2007) · Zbl 1171.90009
[26] Moreau, JJ, Proximité et dualité dans un espace hilbertien, Bulletin de la Societé Mathématique de France, 93, 273-299 (1965) · Zbl 0136.12101 · doi:10.24033/bsmf.1625
[27] Moudafi, A., The split common fixed point problem for demicontractive mappings, Inverse Probl., 26, 587-600 (2010) · Zbl 1219.90185 · doi:10.1088/0266-5611/26/5/055007
[28] Moudafi, A., A note on the split common fixed point problem for quasinonexpansive operators, Nonlinear Anal., 74, 4083-4087 (2011) · Zbl 1232.49017 · doi:10.1016/j.na.2011.03.041
[29] Moudafi, A.; Al-Shemas, E., Simultaneous iterative methods for split equality problem, Trans. Math. Program. Appl., 1, 1-11 (2013)
[30] Nasri, M.; Sosa, W., Equilibrium problems and generalized Nash games, Optimization, 60, 1161-1170 (2011) · Zbl 1230.91012 · doi:10.1080/02331934.2010.527341
[31] Peng, J.W., Liou, Y.C., Yao, J.C.: An iterative algorithm combining viscosity method with parallel method for a generalized equilibrium problem and strict pseudocontractions. Fixed Point Theory Appl. 2009 Article ID 794178 (2009) · Zbl 1163.91463
[32] Reich, S.; Sabach, S., Three strong convergence theorems regarding iterative methods for solving equilibrium problems in reflexive Banach spaces, Contemporary Math., 568, 225-240 (2012) · Zbl 1293.47065 · doi:10.1090/conm/568/11285
[33] Shehu, Y.; Mewomo, OT; Ogbuisi, FU, Further investigation into approximation of a common solution of fixed point problems and split feasibility problems, Acta Math Sci., 36B, 913-930 (2016) · Zbl 1363.47118 · doi:10.1016/S0252-9602(16)30049-2
[34] Shehu, Y.; Ogbuisi, FU, An iterative algorithm for approximating a solution of split common fixed point problem for demi-contractive maps, Dynam. Cont. Dis. Ser. B., 23, 205-216 (2016) · Zbl 1347.47045
[35] Tada, A., Takahashi, W. Takahashi, W, Tanaka, T (eds.): Strong Convergence Theorem for an Equilibrium Problem and a Nonexpansive Mapping. Yokohama Publishers, Yokohama (2005) · Zbl 1122.47055
[36] Takahashi, W., Introduction to Nonlinear and Convex Analysis (2009), Yokohama: Yokohama Publishers, Yokohama · Zbl 1183.46001
[37] Tan, K-K; Xu, HK, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl., 178, 2, 301-308 (1993) · Zbl 0895.47048 · doi:10.1006/jmaa.1993.1309
[38] Thung, K., Raveendran, P.: A Survey of Image Quality Measures. In: 2009 International Conference for Technical Postgraduates (TECHPOS), pp 1-4 (2009)
[39] Xu, HK, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66, 240-256 (2002) · Zbl 1013.47032 · doi:10.1112/S0024610702003332
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.