×

Lévy processes and infinitely divisible measures in the dual of a nuclear space. (English) Zbl 1450.60004

The paper under review is to present a characterization of Lévy measures on strong duals of a nuclear space and provide conditions for the existence of regular versions to cylindrical Lévy processes in the dual space. There are few studies of general Lévy processes in the dual of a nuclear space, and this paper is the first to address the correspondence between Lévy processes and infinitely divisible measures on the dual of general nuclear spaces.
Section 2 starts with the introduction of nuclear spaces and their strong duals. The strong topology on the strong dual space is generated by the family of semi-norms with bounded sup-normal, and a locally convex space is nuclear if its topology is generated by a family of Hilbertian semi-norms through Hilbert-Schmidt canonical inclusions (examples are given in Section 6). A subset of a strong dual space \(\Phi'\) with respect to \(M\subset \Phi'\) \[ Z(\phi_1, \dots, \phi_n; A; M) = \{f\in \Phi': (f[\phi_i])_{1\le i \le n} \in A, \phi_i\in M\} = \pi^{-1}_{\phi_1,\dots,\phi_n} (A), \] is a cylindrical set, where a linear map \(\pi_{\phi_1,\dots,\phi_n}: \Phi' \to \mathbb{R}^n\) is given by \(\pi_{\phi_1,\dots,\phi_n}(f) = (f[\phi_i])_{1\le i \le n}\). The author in previous work [J. Theor. Probab. 31, No. 2, 867–894 (2018; Zbl 1405.60005)] characterized regular \(\Phi'\)-valued random variables and cylindrical processes in \(\Phi'\).
Section 3 devotes to the infinitely divisible measures and convolution semi-groups in the strong dual, it shows that for any \(\mu\) infinitely divisible measure in a strong quasi-complete dual space, there exists a unique continuous convolution semi-group \(\{\mu_t\}_{t\ge 0}\) with \(\mu_1 = \mu\) in Theorem 3.2 based on results of E. Siebert [Z. Wahrscheinlichkeitstheor. Verw. Geb. 28, 227–247 (1974; Zbl 0264.60004); Ann. Probab. 4, 433–443 (1976; Zbl 0338.60012)]. Conversely, for any continuous convolution semi-group \(\{\mu_t\}_{t\ge 0}\) in a strong quasi-complete dual space, then \(\{\mu_t\}_{t\in [0, T]}\) is uniformly tight for any \(T>0\). Every \(\Phi'\)-valued Lévy process determines a cylindrical Lévy process in the strong dual space in Lemma 3.7, where \(L=\{L_t\}_{t\ge 0}\) is a cylindrical Lévy process if for any \(n\), \(\{(L_t(\phi_1), \dots, L_t(\phi_n))\}_{t\ge 0}\) is a \(\mathbb{R}^n\)-valued Lévy process. Theorem 3.8 provides sufficient conditions for a cylindrical Lévy process to be one in the strong dual. Its proof relies on the author’ thesis and a characterization of regular random variables, the Prokhorov theorem, as well as the weak topology. For a cylindrical Lévy process in a strong dual space, Theorem 3.9 shows that there is a \(\Phi'\)-valued, regular, cádlág version of the cylindrical Lévy process, unique up to indistinguishable versions. Sufficient conditions for the existence of a cádlág version of the Lévy process with a finite \(n\)-th moment in some Hilbert spaces are given in Theorem 3.12, that will play an important role in the later Lévy-Itô decomposition. One of the main results, Theorem 3.14, describes the existence of a \(\Phi'\)-valued, regular, cádlág cyclindrical Lévy process for infinitely divisible measures on strong dual of a barrelled nuclear space.
Section 4 starts with Poisson random measures and Poisson processes on the strong dual space summarized in Proposition 4.2, where the distribution, characteristic function, mean and variation are given. The Lévy measure is defined in Definition 4.7 to resemble the property that characterizes Lévy measures on Hilbert spaces in [K. R. Parthasarathy, Probability measures on metric spaces. Probability and Mathematical Statistics. A Series of Monographs and Textbooks. New York-London: Academic Press (1967; Zbl 0153.19101)]. The main result Theorem 4.11 on Lévy measures of a Lévy process relies on the Minlo’s lemma due to X. Fernique [Invent. Math. 3, 282–292 (1967; Zbl 0173.16104)] for the inclusion norm on semi-norms. The main result Theorem 4.17 on the Lévy-Itô decomposition occupies subsection 4.5, first to give characteristic functions for a \(\Phi'\)-valued zero mean, regular and square-integrable, cádlág Lévy process in Theorem 4.13, and then to characterize a \(\Phi'\)-valued zero-mean and covariance functional indistinguishable version of Wiener process of the functional version, and the proof of Theorem 4.17 combines previous theorems and cylindrical Lévy process from the definition in a strong dual space. Theorem 4.18 gives Lévy-Khintchine theorem for a \(\Phi'\)-valued, regular, cádlág cyclindrical Lévy process with the characteristic functional on the strong dual. The final results on the Lévy-Khintchine theorem for infinitely divisible measures are given in Theorem 5.1, Section 5.
Examples, remarks and comparisons are explored in Section 6, literature reviews on Lévy process, Lévy-Itô decomposition, Lévy-Khintchine theorem on a strong dual of some particular nuclear spaces are listed, and various related results are mentioned. Other than first considering regularization of cyclindrical Lévy process in the paper, it is still interesting to see if this setup on the strong dual can help us understand Lévy process deeper in the nuclear space.

MSC:

60B11 Probability theory on linear topological spaces
60G51 Processes with independent increments; Lévy processes
60E07 Infinitely divisible distributions; stable distributions
60G20 Generalized stochastic processes

References:

[1] Applebaum, D., Lévy Processes and Stochastic Calculus (2009), Cambridge: Cambridge Studies in Advanced Mathematics, Cambridge · Zbl 1200.60001
[2] Applebaum, D.; Riedle, M., Cylindrical Lévy processes in Banach spaces, Proc. Lond. Math. Soc., 101, 3, 697-726 (2010) · Zbl 1210.60012 · doi:10.1112/plms/pdq004
[3] Badrikian, A., Séminaire Sur les Fonctions Aléatoires Linéaires et les Mesures Cylindriques (1970), Berlin: Springer, Berlin · Zbl 0209.48402
[4] Baumgartner, F.: Lévy processes with values in locally convex Suslin spaces. arXiv:1510.00538
[5] Bogachev, VI, Measure Theory (2007), Berlin: Springer, Berlin · Zbl 1120.28001
[6] Bojdecki, T.; Jakubowski, J., Stochastic integration for inhomogeneous wiener process in the dual of a nuclear space, J. Multivar. Anal., 34, 185-210 (1990) · Zbl 0716.60056 · doi:10.1016/0047-259X(90)90035-G
[7] Bretagnolle, J.L.: Processus à accroissements indépendants. In: Ecole d’Été de Probabilités: Processus Stochastiques, Lecture Notes in Mathematics, vol. 307, pp. 1-26. Springer, Berlin (1973) · Zbl 0267.60002
[8] Chung, DM; Rajput, BS; Tortrat, A., Semistable laws on topological vector spaces, Z. Wahrsch. Verw. Gebiete, 60, 2, 209-218 (1982) · Zbl 0468.60006 · doi:10.1007/BF00531824
[9] Dalecky, YL; Fomin, SV, Measure and Differential Equations in Infinite-Dimensional Space, Mathematics and Its Applications (1991), Berlin: Springer, Berlin · Zbl 0753.46027
[10] Dettweiler, E., Grenzwertsätze für Wahrscheinlichkeitsmaße auf Badrikianschen Räumen, Z. Wahrsch. Verw. Gebiete, 34, 285-311 (1976) · Zbl 0309.60010 · doi:10.1007/BF00535965
[11] Dettweiler, E., Infinitely divisible measures on the cone of an ordered locally convex vector space, Ann. Sci. Univ. Clermont, 14, 61, 11-17 (1976) · Zbl 0353.60010
[12] Dineen, S.: Complex Analysis in Locally Convex Spaces, North-Holland Mathematics Studies, vol. 57. Notas de Mat., No. 83, North-Holland (1981) · Zbl 0484.46044
[13] Fernique, X., Séries de distributions aléatoires indépendantes. I: Généralités sur les distributions aléatoires, Sémin. Probab. (Strasbg.), 1, 54-64 (1967)
[14] Fernique, X., Lois indéfinement divisibles sur l’space des distributions, Invent. Math., 3, 282-292 (1967) · Zbl 0173.16104 · doi:10.1007/BF01402953
[15] Fonseca-Mora, C.A.: Stochastic analysis with Lévy noise in the dual of a nuclear space. Ph.D. Thesis, The University of Sheffield (2015)
[16] Fonseca-Mora, CA, Existence of continuous and càdlàg versions for cylindrical processes in the dual of a nuclear space, J. Theor. Probab., 31, 2, 867-894 (2018) · Zbl 1405.60005 · doi:10.1007/s10959-016-0726-0
[17] Fonseca-Mora, CA, Stochastic integration and stochastic PDEs driven by jumps on the dual of a nuclear space, Stoch PDE: Anal. Comput., 6, 4, 618-689 (2018) · Zbl 1435.60043 · doi:10.1007/s40072-018-0117-x
[18] Fonseca-Mora, C.A.: Tightness and weak convergence of probabilities on the Skorokhod space on the dual of a nuclear space and applications. Studia Math. arXiv:1806.10231 · Zbl 1444.60008
[19] Fonseca-Mora, C.A.: Semimartingales on duals of nuclear spaces. arXiv:1902.03981 · Zbl 1445.60037
[20] Hogbe-Nlend, H., Moscatelli, V.: Nuclear and Conuclear Spaces, North-Holland Mathematical Studies, vol. 52. Notas de Mat., No. 79, North-Holland (1981) · Zbl 0467.46001
[21] Ikeda, N.; Watanabe, S., Stochastic Differential Equations and Diffusion Processes (1989), Amsterdam: North-Holland/Kodansha, Amsterdam · Zbl 0684.60040
[22] Itô, K., Foundations of Stochastic Equations in Infinite Dimensional Spaces (1984), Philadelphia: SIAM, Philadelphia · Zbl 0547.60064
[23] Jarchow, H., Locally Convex Spaces, Mathematische Leitfäden (1981), Berlin: Springer, Berlin · Zbl 0466.46001
[24] Kallenberg, O., Foundations of Modern Probability, Probability and Its Applications (2002), New York: Springer, New York · Zbl 0996.60001
[25] Kallianpur, G., Xiong, J.: Stochastic Differential Equations in Infinite Dimensional Spaces. Lecture Notes-Monograph Series. Institute of Mathematical Statistics, Hayward, CA (1995) · Zbl 0845.60008
[26] Medvegyev, P., Stochastic Integration Theory (2007), Oxford: Oxford University Press, Oxford · Zbl 1153.60002
[27] Narici, L.; Beckenstein, E., Topological Vector Spaces (2011), New York: CRC Press, New York · Zbl 1219.46001
[28] Parthasarathy, KR, Probability Measures on Metric Spaces (1967), New York: New York Academic Press, New York · Zbl 0153.19101
[29] Pérez-Abreu, V.; Rocha-Arteaga, A.; Tudor, C., Cone-additive processes in duals of nuclear Féchet spaces, Random Oper. Stoch. Equ., 13, 4, 353-368 (2005) · Zbl 1119.60035 · doi:10.1163/156939705775992394
[30] Pérez-Abreu, V.; Rosiński, J., Representation of infinitely divisible distributions on cones, J. Theor. Probab., 20, 3, 535-544 (2007) · Zbl 1128.60003 · doi:10.1007/s10959-007-0076-z
[31] Pietsch, A., Nuclear Locally Convex Spaces, Ergebnisse der Mathematikund ihrer Grenzgebiete (1972), Berlin: Springer, Berlin · Zbl 0308.47024
[32] Rajput, BS, On the support of symmetric infinitely divisible and stable probability measures on LCTVS, Proc. Am. Math. Soc., 66, 2, 331-334 (1977) · Zbl 0374.60006 · doi:10.1090/S0002-9939-1977-0494351-X
[33] Rao, MM, Stochastic Processes: General Theory (1995), New York: Springer, New York
[34] Riedle, M.; van Gaans, O., Stochastic integration for Lévy processes with values in banach spaces, Stoch. Process. Appl., 119, 1952-1974 (2009) · Zbl 1179.60033 · doi:10.1016/j.spa.2008.09.009
[35] Sato, K-I, Lévy Processes and Infinitely Divisible Distributions (1999), Cambridge: Cambridge University Press, Cambridge · Zbl 0973.60001
[36] Schaefer, H., Topological Vector Spaces (1999), New York: Springer, New York · Zbl 0983.46002
[37] Schwartz, L., Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures (1973), Oxford: Oxford University Press, Oxford · Zbl 0298.28001
[38] Schwartz, L., Processus de Markov et désintégrations régulières, Ann. Inst. Fourier (Grenoble), 27, 3, 211-277 (1977) · Zbl 0356.60016 · doi:10.5802/aif.668
[39] Siebert, E., Einbettung unendlich teilbarer wahrscheinlichkeitsmaße auf topologischen gruppen, Z. Wahrscheinlichkeitstheorie Verw. Geb., 28, 227-247 (1974) · Zbl 0264.60004 · doi:10.1007/BF00533243
[40] Siebert, E., Convergence and convolutions of probability measures on a topological group, Ann. Probab., 4, 3, 433-443 (1976) · Zbl 0338.60012 · doi:10.1214/aop/1176996091
[41] Tortrat, A.: Structure des lois indéfiniment divisibles \((\mu \in{\cal{I}}={\cal{I}}(X))\) dans un espace vectoriel topologique (séparé) X, 1967 Symposium on Probability Methods in Analysis (Loutraki, 1966), pp. 299-328. Springer (1967) · Zbl 0153.19301
[42] Tortrat, A., Sur la structure des lois indéfiniment divisibles dans les espaces vectoriels, Z. Wahrsch. Verw. Gebiete, 11, 311-326 (1969) · Zbl 0167.46203 · doi:10.1007/BF00531653
[43] Tortrat, A., Lois \(e(\lambda )\) dans les espaces vectoriels et lois stables, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 37, 2, 179-182 (1976) · Zbl 0335.60013 · doi:10.1007/BF00536779
[44] Tortrat, A., Sur le support des lois indéfiniment divisibles dans les espaces vectoriels localement convexes, Ann. Inst. Henri Poincaré Sect. B (N.S.), 13, 1, 27-43 (1977) · Zbl 0374.60003
[45] Trèves, F., Topological Vector Spaces, Distributions and Kernels (1967), New York: Academic Press, New York · Zbl 0171.10402
[46] Üstünel, AS, Additive processes on nuclear spaces, Ann. Probab., 12, 3, 858-868 (1984) · Zbl 0554.60072 · doi:10.1214/aop/1176993234
[47] Vakhania, NN; Tarieladze, VI; Chobanyan, SA, Probability Distributions on Banach Spaces (1987), Dordrecht: Reidel Publishing, Dordrecht · Zbl 0698.60003
[48] Varadhan, SRS, Limit theorems for sums of independent random variables with values in a Hilbert space, Sankhyā Ser. A, 24, 213-238 (1962) · Zbl 0113.34101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.