×

Variational method for computing ray trajectories and fronts of tsunami waves generated by a localized source. (English. Russian original) Zbl 1450.35257

Comput. Math. Math. Phys. 60, No. 8, 1392-1401 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 8, 1439-1448 (2020).
Summary: A variational approach for solving the boundary value problem of computing ray trajectories and fronts of ocean waves is presented. The solution method is based on Fermat’s principle (of stationary time). A distinctive feature of the proposed approach is that the Fermat functional is optimized directly without solving the Euler-Lagrange equation; moreover, the locations of the wave source and receiver are fixed. Multipath propagation in the boundary value problem is addressed by finding various types of stationary points of the Fermat functional. The technique is numerically tested by applying the method of bicharacteristics with the use of analytical seabed models. The advantages of the variational approach and the prospects of its further development as applied to ocean wave computation are described. The relations between various types of stationary points of the travel time functional, caustics, and foci are discussed.

MSC:

35Q86 PDEs in connection with geophysics
35Q35 PDEs in connection with fluid mechanics
86A15 Seismology (including tsunami modeling), earthquakes
86A05 Hydrology, hydrography, oceanography
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
65M25 Numerical aspects of the method of characteristics for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Marchuk, A. G.; Chubarov, L. B.; Shokin, Yu. I., Numerical Modeling of Tsunamis (1983), Moscow: Nauka, Moscow · Zbl 0547.76001
[2] E. N. Pelinovskii, Hydrodynamics of Tsunami Waves (Inst. Prikl. Fiz. Ross. Akad. Nauk, N. Novgorod, 1996) [in Russian].
[3] M. V. Berry, “Focused tsunami waves,” Proc. R. Soc. A: Math. Phys. Eng. Sci. 463 (2087), 3055-3071 (2007). · Zbl 1158.86001
[4] Satake, K., Effects of bathymetry on tsunami propagation: Application of ray tracing to tsunamis, Pure Appl. Geophys., 126, 27-36 (1988) · doi:10.1007/BF00876912
[5] Ward, S. N., Landslide tsunami, J. Geophys. Res. Solid Earth B, 106, 11201-11215 (2001) · doi:10.1029/2000JB900450
[6] Dobrokhotov, S. Y.; Sekerzh-Zenkovich, S. Y.; Tirozzi, B.; Tudorovskii, T. Y., Description of tsunami propagation based on the Maslov canonical operator, Dokl. Math., 74, 592-596 (2006) · Zbl 1119.76311 · doi:10.1134/S1064562406040326
[7] Dobrokhotov, S. Y.; Shafarevich, A. I.; Tirozzi, B., Localized wave and vortical solutions to linear hyperbolic systems and their application to linear shallow water equations,”*, Russ. J. Math. Phys., 15, 192-221 (2008) · Zbl 1180.35336 · doi:10.1134/S1061920808020052
[8] Dobrokhotov, S. Y.; Nazaikinskii, V. E., Punctured Lagrangian manifolds and asymptotic solutions of the linear water wave equations with localized initial conditions, Math. Notes, 101, 1053-1060 (2017) · Zbl 1516.35040 · doi:10.1134/S0001434617050339
[9] N. N. Kalitkin, Numerical Methods, 2nd ed. (BKhV-Peterburg, St. Petersburg, 2011) [in Russian].
[10] Um, J.; Thurber, C., A fast algorithm for two-point seismic ray tracing, Bull. Seismol. Soc. Am., 77, 972-986 (1987)
[11] Moser, T. J.; Nolet, G.; Snieder, R., Ray bending revisited, Bull. Seismol. Soc. Am., 82, 259-288 (1992)
[12] Coleman, C. J., Point-to-point ionospheric ray tracing by a direct variational method, Radio Sci., 46, 1-7 (2011) · doi:10.1029/2011RS004748
[13] Benzik, A. V., “Prediction of trajectory characteristics of decametric waves propagation on the basis of Fermat’s principle,” Tekh, Radiosvyazi, No., 1, 32-41 (2014)
[14] Mills, G.; Jónsson, H., Quantum and thermal effects in H_2 dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems, Phys. Rev. Lett., 72, 1124 (1994) · doi:10.1103/PhysRevLett.72.1124
[15] Jónsson, H.; Mills, G.; Jacobsen, K. W., Classical and Quantum Dynamics in Condensed Phase Simulations (1998), Singapore: World Scientific, Singapore
[16] Henkelman, G.; Jónsson, H., A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives, J. Chem. Phys., 111, 7010-7022 (1999) · doi:10.1063/1.480097
[17] Bessarab, P. F.; Uzdin, V. M.; Jónsson, H., Size and shape dependence of thermal spin transitions in nanoislands, Phys. Rev. Lett., 110, 020604 (2013) · doi:10.1103/PhysRevLett.110.020604
[18] Bessarab, P. F.; Uzdin, V. M.; Jónsson, H., Method for finding mechanism and activation energy of magnetic transitions, applied to skyrmion and antivortex annihilation, Comput. Phys. Commun., 196, 335-347 (2015) · doi:10.1016/j.cpc.2015.07.001
[19] Nosikov, I. A.; Klimenko, M. V.; Bessarab, P. F.; Zhbankov, G. A., Application of the nudged elastic band method to the point-to-point radio wave ray tracing in IRI modeled ionosphere, Adv. Space Res., 60, 491-497 (2017) · doi:10.1016/j.asr.2016.12.003
[20] Nosikov, I. A.; Klimenko, M. V.; Zhbankov, G. A.; Podlesnyi, A. V.; Ivanova, V. A.; Bessarab, P. F., Generalized force approach to point-to-point ionospheric ray tracing and systematic identification of high and low rays, IEEE Trans. Antennas Propag., 68, 455-467 (2020) · doi:10.1109/TAP.2019.2938817
[21] Kabanikhin, S.; Hasanov, A.; Marinin, I.; Krivorotko, O.; Khidasheli, D., A variational approach to reconstruction of an initial tsunami source perturbation, Appl. Numer. Math., 83, 22-37 (2014) · Zbl 1288.86002 · doi:10.1016/j.apnum.2014.04.008
[22] Nosikov, I. A.; Bessarab, P. F.; Klimenko, M. V., Method of transverse displacements formulation for calculating the HF radio wave propagation paths: Statement of the problem and preliminary results, Radiophys. Quantum Electron., 59, 1-12 (2016) · doi:10.1007/s11141-016-9670-1
[23] D. M. Einarsdóttir, A. Arnaldsson, F. Óskarsson, and H. Jónsson, “Path optimization with application to tunneling,” International Workshop on Applied Parallel Computing (Springer, Berlin, 2010), pp. 45-55.
[24] Ásgeirsson, V.; Arnaldsson, A.; Jónsson, H., Efficient evaluation of atom tunneling combined with electronic structure calculations, J. Chem. Phys., 148, 102334 (2018) · doi:10.1063/1.5007180
[25] Gutiérrez, P. M.; Argáez, C.; Jónsson, H., Improved minimum mode following method for finding first order saddle points, J. Chem. Theory Comput., 13, 125-134 (2017) · doi:10.1021/acs.jctc.5b01216
[26] Andersen, H. C., Molecular dynamics simulations at constant pressure and/or temperature, J. Chem. Phys., 72, 2384-2393 (1980) · doi:10.1063/1.439486
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.