×

HOSVD based multidimensional parameter estimation for massive MIMO system from incomplete channel measurements. (English) Zbl 1448.93156

Summary: The dominant multipath components for massive multiple-input multiple-output systems can be described using geometry-based channel models with \(R\)-dimensional \((R\)-D) parameters. These parameters are crucial for channel correlation acquisition, which is a prerequisite for many technical challenges. In this paper, we consider higher-order singular value decomposition based \(R\)-D channel modeling parameter estimation from incomplete measurements. Incomplete higher-order orthogonality iteration algorithm can be utilized to solve the problem, which simultaneously achieves tensor recovery and tensor decomposition. After obtaining the signal or noise subspace, the parameters of interest can be estimated by using subspace methods.

MSC:

93C35 Multivariable systems, multidimensional control systems

Software:

Tensorlab
Full Text: DOI

References:

[1] Adhikary, A., Nam, J., Ahn, J. Y., & Caire, G. (2013). Joint spatial division and multiplexing: The large-scale array regime. IEEE Transactions on Information Theory, 59(10), 6441-6463. · Zbl 1364.94016 · doi:10.1109/TIT.2013.2269476
[2] Cheng, L., Wu, Y. C., Zhang, J., & Liu, L. (2015). Subspace identification for DOA estimation in massive/full-dimension MIMO systems: Bad data mitigation and automatic source enumeration. IEEE Transactions on Signal Processing, 63(22), 5897-5909. · Zbl 1394.94122 · doi:10.1109/TSP.2015.2458788
[3] Cichocki, A., Mandic, D., Lathauwer, L. D., Zhou, G., Zhao, Q., Caiafa, C., et al. (2015). Tensor decompositions for signal processing applications: From two-way to multiway component analysis. IEEE Signal Processing Magazine, 32(2), 145-163. · doi:10.1109/MSP.2013.2297439
[4] Davenport, M. A., & Romberg, J. (2016). An overview of low-rank matrix recovery from incomplete observations. IEEE Journal of Selected Topics in Signal Processing, 10(4), 608-622. · doi:10.1109/JSTSP.2016.2539100
[5] De Lathauwer, L., Moor, B. D., & Vandewalle, J. (2000). A multilinear singular value decomposition. SIAM Journal on Matrix Analysis and Applications, 21(4), 1253-1278. · Zbl 0962.15005 · doi:10.1137/S0895479896305696
[6] Filik, T., & Tuncer, T. E. (2014). 2-D DOA estimation in case of unknown mutual coupling for multipath signals. Multidimensional Systems and Signal Processing, 27(1), 69-86. · Zbl 1380.94052 · doi:10.1007/s11045-014-0290-7
[7] Golub, G. H., & Van Loan, C. F. (2012). Matrix computations (4th ed.). Baltimore, MD: Johns Hopkins University Press. · Zbl 1268.65037
[8] Haardt, M., & Nossek, J. A. (1998). Simultaneous Schur decomposition of several nonsymmetric matrices to achieve automatic pairing in multidimensional harmonic retrieval problems. IEEE Transactions on Signal Processing, 46(1), 161-169. · doi:10.1109/78.651206
[9] Haardt, M., Roemer, F., & Del Galdo, G. (2008). Higher-order SVD-based subspace estimation to improve the parameter estimation accuracy in multidimensional harmonic retrieval problems. IEEE Transactions on Signal Processing, 56(7), 3198-3213. · Zbl 1390.94203 · doi:10.1109/TSP.2008.917929
[10] Heath, R. W., Gonzalez-Prelcic, N., Rangan, S., Roh, W., & Sayeed, A. M. (2016). An overview of signal processing techniques for millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 10(3), 436-453. · doi:10.1109/JSTSP.2016.2523924
[11] Hoydis, J., Hosseini, K., Brink, S. T., & Debbah, M. (2013). Making smart use of excess antennas: Massive MIMO, small cells, and TDD. Bell Labs Technical Journal, 18(2), 5-21. · doi:10.1002/bltj.21602
[12] Huang, L. T., de Almeida, A. L., & So, H. (2016). Target estimation in bistatic MIMO radar via tensor completion. Signal Processing, 120, 654-659. · doi:10.1016/j.sigpro.2015.09.036
[13] Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review, 51(3), 455-500. · Zbl 1173.65029 · doi:10.1137/07070111X
[14] Larsson, E., Edfors, O., Tufvesson, F., & Marzetta, T. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186-195. · doi:10.1109/MCOM.2014.6736761
[15] Larsson, E., & Stoica, P. (2001). High-resolution direction finding: The missing data case. IEEE Transactions on Signal Processing, 49(5), 950-958. · doi:10.1109/78.917799
[16] Lathauwer, L. D., Moor, B. D., & Vandewalle, J. (2000). On the best rank-1 and rank-\[(R_1, R_2, \ldots, R_N\] R1,R2,…,RN) approximation of higher-order tensors. SIAM Journal on Matrix Analysis and Applications, 21(4), 1324-1342. · Zbl 0958.15026 · doi:10.1137/S0895479898346995
[17] Liao, B., & Chan, S. C. (2017). Direction finding in MIMO radar with unknown transmitter and/or receiver gains and phases. Multidimensional Systems and Signal Processing, 28(2), 691-707. · Zbl 1387.94050 · doi:10.1007/s11045-015-0368-x
[18] Liao, B., Chan, S. C., Huang, L., & Guo, C. (2016). Iterative methods for subspace and DOA estimation in nonuniform noise. IEEE Transactions on Signal Processing, 64(12), 3008-3020. · Zbl 1414.94335 · doi:10.1109/TSP.2016.2537265
[19] Liu, J., Liu, X., & Ma, X. (2007). Multidimensional frequency estimation with finite snapshots in the presence of identical frequencies. IEEE Transactions on Signal Processing, 55(11), 5179-5194. · Zbl 1390.94274 · doi:10.1109/TSP.2007.899530
[20] Liu, X., Sidiropoulos, N. D., & Jiang, T. (2005). Space-time processing for MIMO communications. In A. B. Gershman & N. Sidiropoulos (Eds.), Multidimensional harmonic retrieval with applications in MIMO wireless channel sounding, chap 2 (pp. 41-75). New York: Wiley.
[21] Lu, L., Li, G., Swindlehurst, A., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742-758. · doi:10.1109/JSTSP.2014.2317671
[22] Marzetta, T. L. (2015). Massive MIMO: An introduction. Bell Labs Technical Journal, 20, 11-22. · doi:10.15325/BLTJ.2015.2407793
[23] Noh, S., Zoltowski, M. D., Sung, Y., & Love, D. J. (2014). Pilot beam pattern design for channel estimation in massive MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 8(5), 787-801. · doi:10.1109/JSTSP.2014.2327572
[24] Roemer, F., Haardt, M., & Galdo, G. D. (2014). Analytical performance assessment of multi-dimensional matrix- and tensor-based ESPRIT-type algorithms. IEEE Transactions on Signal Processing, 62(10), 2611-2625. · Zbl 1394.94487 · doi:10.1109/TSP.2014.2313530
[25] Salmi, J., Richter, A., & Koivunen, V. (2009). Sequential unfolding SVD for tensors with applications in array signal processing. IEEE Transactions on Signal Processing, 57(12), 4719-4733. · Zbl 1392.94433 · doi:10.1109/TSP.2009.2027740
[26] Shafin, R., Liu, L., Zhang, J., & Wu, Y. C. (2016). DoA estimation and capacity analysis for 3-D millimeter wave massive-MIMO/FD-MIMO OFDM systems. IEEE Transactions on Wireless Communications, 15(10), 6963-6978. · doi:10.1109/TWC.2016.2594173
[27] Stoica, P., & Nehorai, A. (1989). Music, maximum likelihood, and Cramer-Rao bound. IEEE Transactions on Acoustics, Speech and Signal Processing, 37(5), 720-741. · Zbl 0672.62102 · doi:10.1109/29.17564
[28] Sun, W., & So, H. C. (2012). Accurate and computationally efficient tensor-based subspace approach for multidimensional harmonic retrieval. IEEE Transactions on Signal Processing, 60(10), 5077-5088. · Zbl 1393.94450 · doi:10.1109/TSP.2012.2205571
[29] Sun, W., So, H. C., Chan, F. K. W., & Huang, L. (2013). Tensor approach for eigenvector-based multi-dimensional harmonic retrieval. IEEE Transactions on Signal Processing, 61(13), 3378-3388. · Zbl 1393.94451 · doi:10.1109/TSP.2013.2259163
[30] Tan, H., Cheng, B., Wang, W., Zhang, Y. J., & Ran, B. (2014). Tensor completion via a multi-linear low-n-rank factorization model. Neurocomputing, 133, 161-169. · doi:10.1016/j.neucom.2013.11.020
[31] Tuncer, T. E., & Friedlander, B. (2009). Classical and modern direction-of-arrival estimation. New York: Academic Press.
[32] Van Trees, H. L. (2002). Optimum array processing. New York: Wiley. · doi:10.1002/0471221104
[33] Vervliet, N., Debals, O., Sorber, L., Van Barel, M., & De Lathauwer, L. (2016). Tensorlab 3.0. http://www.tensorlab.net.
[34] Wen, F., & Liang, C. (2015). Improved tensor-MODE based direction-of-arrival estimation for massive MIMO systems. IEEE Communications Letters, 19(12), 2182-2185. · doi:10.1109/LCOMM.2015.2493064
[35] Wen, F., & Liu, W. (2016). CANDECOMP/PARAFAC decomposition based multi-dimensional nonuniform harmonic retrieval. In IEEE international conference on digital signal processing (pp. 172-176).
[36] Wen, F., & So, H. C. (2015a). Robust multi-dimensional harmonic retrieval using iteratively reweighted HOSVD. IEEE Signal Processing Letters, 22(12), 2464-2468. · doi:10.1109/LSP.2015.2493521
[37] Wen, F., & So, H. C. (2015b). Tensor-MODE for multi-dimensional harmonic retrieval with coherent sources. Signal Processing, 108, 530-534. · doi:10.1016/j.sigpro.2014.10.009
[38] Wen, F., & Tay, W. P. (2012). Tensor decomposition based R-dimensional matrix pencil method. In Proceedings of international conference on information fusion (FUSION), Singapore (pp. 1712-1717).
[39] Xu, Y. (2016). Fast algorithms for higher-order singular value decomposition from incomplete data. Journal of Computational Mathematics, 35(4), 395-420.
[40] Yang, L., Fang, J., Li, H., & Zeng, B. (2016). An iterative reweighted method for tucker decomposition of incomplete tensors. IEEE Transactions on Signal Processing, 64(18), 4817-4829. · Zbl 1414.94702 · doi:10.1109/TSP.2016.2572047
[41] Yin, H., Gesbert, D., Filippou, M., & Liu, Y. (2013). A coordinated approach to channel estimation in large-scale multiple-antenna systems. IEEE Journal on Selected Areas in Communications, 31(2), 264-273. · doi:10.1109/JSAC.2013.130214
[42] Ying, D., Vook, F. W., Thomas, T. A., & Love, D. J. (2014). Sub-sector-based codebook feedback for massive MIMO with 2D antenna arrays. In Proceedings of IEEE global communications conference (pp. 3702-3707).
[43] Yokota, T., & Cichocki, A. (2016). Tensor completion via functional smooth component deflation. In Proceedings of IEEE international conference on acoustics, speech and signal processing (pp. 2514-2518).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.