×

Long-term attitude dynamics of space debris in Sun-synchronous orbits: Cassini cycles and chaotic stabilization. (English) Zbl 1448.70066

Summary: Comprehensive analysis of space debris rotational dynamics is vital for active debris removal missions that require physical capture or detumbling of a target. We study the attitude motion of large space debris objects that admittedly pose an immediate danger to space operations in low Earth orbits. Particularly, we focus on Sun-synchronous orbits (SSO) with altitude range 600–800 km, where the density of space debris is maximal. Our mathematical model takes into account the gravity-gradient torque and the torque due to eddy currents induced by the interaction of conductive materials with the geomagnetic field. Using perturbation techniques and numerical methods, we examine the deceleration of the initial fast rotation and the subsequent transition to a relative equilibrium with respect to the local vertical. A better understanding of the latter phase is achieved owing to a more accurate model of the eddy-current torque than in most prior research. We show that SSO precession is also a crucial factor influencing the motion properties. One of its effects is manifested at the deceleration stage as oscillations of the angular momentum vector about the direction to the south celestial pole.

MSC:

70M20 Orbital mechanics

References:

[1] Albuja, A.A., Scheeres, D.J., McMahon, J.W.: Evolution of angular velocity for defunct satellites as a result of YORP: an initial study. Adv. Space Res. 56, 237-251 (2015) · doi:10.1016/j.asr.2015.04.013
[2] Anselmo, L., Pardini, C.: Ranking upper stages in low Earth orbit for active removal. Acta Astronaut. 122, 19-27 (2016) · doi:10.1016/j.actaastro.2016.01.019
[3] Aslanov, V., Yudintsev, V.: Dynamics of large space debris removal using tethered space tug. Acta Astronaut. 91, 149-156 (2013) · doi:10.1016/j.actaastro.2013.05.020
[4] Beletsky, V.V.: Motion of an Artificial Satellite About Its Center of Mass. Israel program for scientific translations, Jerusalem (1966)
[5] Beletsky, V.V., Lopes, R.V.F., Pivovarov, M.L.: Chaos in spacecraft attitude motion in Earth’s magnetic field. Chaos 9, 493-498 (1999) · Zbl 0987.70018 · doi:10.1063/1.166422
[6] Bonnal, C., Ruault, J.-M., Desjean, M.-C.: Active debris removal: recent progress and current trends. Acta Astronaut. 85, 51-60 (2013) · doi:10.1016/j.actaastro.2012.11.009
[7] Byrd, P.F., Friedman, M.D.: Handbook of Elliptical Integrals for Engineers and Physicists. Springer, Berlin (1954) · Zbl 0055.11905 · doi:10.1007/978-3-642-52803-3
[8] Cochran, J.E.: Effects of gravity-gradient torque on the rotational motion of a triaxial satellite in a precessing elliptic orbit. Celest. Mech. 6, 127-150 (1972) · Zbl 0247.70024 · doi:10.1007/BF01227777
[9] De Pontieu, B.: Database of photometric periods of artificial satellites. Adv. Space Res. 19, 229-232 (1997) · doi:10.1016/S0273-1177(97)00005-7
[10] Efimov, S., Pritykin, D., Sidorenko, V.: Attitude motion of large space debris in sun-synchronous orbits: simulation of long-term evolution. Adv. Astronaut. Sci. 161, 131-142 (2017a)
[11] Efimov, S., Pritykin, D., Sidorenko, V.: Defunct Satellites in Nearly Polar Orbits: Long-term Evolution of Attitude Motion. arXiv.1711.07046 (2017b). https://doi.org/10.1515/astro-2018-0029
[12] Fabrycky, D.C., Johnson, E.T., Goodman, J.: Cassini states with dissipation: why obliquity tides cannot inflate hot Jupiters. Astrophys. J. 665, 754-766 (2007) · doi:10.1086/519075
[13] Gladman, B., Dane Quinn, D., Nicholson, P., Rand, R.: Synchronous locking of tidally evolving satellites. Icarus 122, 166-192 (1996) · doi:10.1006/icar.1996.0117
[14] Golubkov, V.V.: Moment of forces in a magnetic field. Cosm. Res. 10, 20-39 (1972)
[15] Gomez, N.O., Walker, S.J.I.: Earth’s gravity gradient and eddy currents effects on the rotational dynamics of space debris objects: Envisat case study. Adv. Space Res. 56, 494-508 (2015) · doi:10.1016/j.asr.2014.12.031
[16] Henrard, J., Murigande, C.: Colombo’s top. Celest. Mech. 40, 345-366 (1987) · Zbl 0657.70019 · doi:10.1007/BF01235852
[17] Hughes, P.C.: Spacecraft Attitude Dynamics. Dover Publications, Mineola (2004)
[18] International Association of Geomagnetism and Aeronomy. www.ngdc.noaa.gov/IAGA/vmod. Last checked 14 May 2018
[19] Koshkin, N., Korobeynikova, E., Shakun, L., Strakhova, S., Tang, Z.H.: Remote sensing of the EnviSat and Cbers-2B satellites rotation around the centre of mass by photometry. Adv. Space Res. 58, 358-371 (2016) · doi:10.1016/j.asr.2016.04.024
[20] Kucharski, D., Kirchner, G., Koidl, F., Fan, C., Carman, R., Moore, C.: Attitude and spin period of space debris Envisat measured by satellite laser ranging. IEEE Trans. Geosci. Remote Sens. 52, 7651-7657 (2014) · doi:10.1109/TGRS.2014.2316138
[21] Lemmens, S., Krag, H., Rosebrock, J., Carnelli, L.: Radar mappings for attitude analysis of objects in orbit. In: Proceedings of the 6th European Conference on Space Debris (2013)
[22] Lin, H.-Y., Zhao, C.-Y.: Evolution of the rotational motion of space debris acted upon by eddy current torque. Astrophys. Space Sci. 357, 167 (2015) · doi:10.1007/s10509-015-2396-2
[23] Martynenko, Y.G.: Effect of eddy currents on the rotation and attitude of a satellite. Cosm. Res. 23, 347-357 (1985)
[24] Neishtadt, A.; Gutkowski, W. (ed.); Kowalewski, TA (ed.), Probability phenomena in perturbed dynamical systems (2005), Dordrecht
[25] Neishtadt, A.: Averaging method for systems with separatrix crossing. Nonlinearity 30(7), 2871-2917 (2017) · Zbl 1381.37073 · doi:10.1088/1361-6544/aa712f
[26] Ojakangas, G.W., Anz-Meador, P., Cowardin, H.: Probable rotation states of rocket bodies in low Earth orbit. In: Proceedings of AMOS Conference (2012)
[27] Ormsby, J.F.A.: Eddy current torques and motion decay on rotating shells. ESD-TR-67-94 (1967)
[28] Praly, N., Hillion, M., Bonnal, C., Laurent-Varin, J., Petit, N.: Study on the eddy current damping of the spin dynamics of space debris from the Ariane launcher upper stages. Acta Astronaut. 76, 145-153 (2012) · doi:10.1016/j.actaastro.2012.03.004
[29] Sagnieres, L.B.M., Sharf, I.: Stochastic modeling of hypervelocity impacts in attitude propagation of space debris. Adv. Space Res. 59, 1128-1143 (2017) · doi:10.1016/j.asr.2016.11.030
[30] Santoni, F., Cordelli, E., Piergentili, F.: Determination of disposed-upper-stage attitude motion by ground-based optical observations. J. Spacecr. Rockets 50, 701-708 (2013) · doi:10.2514/1.A32372
[31] Sarychev, V.A., Sazonov, V.V.: Estimate of the influence of the dissipative magnetic moment from vortex currents on the fast rotation of a satellite. Cosm. Res. 20, 297-300 (1982)
[32] Šilha, J., Pittet, J.-N., Hamara, M., Schildknecht, T.: Apparent rotation properties of space debris extracted from photometric measurements. Adv. Space Res. 61(3), 844-861 (2018) · doi:10.1016/j.asr.2017.10.048
[33] Smith, G.L.: Effects of magnetically induced eddy-currents on spin motions of Earth satellite. NASA. TN-D-2198 (1964)
[34] Vallado, D.A.: Fundamentals of Astrodynamics and Applications. Springer, New York (2007) · Zbl 1191.70002
[35] Van der Pas, N., Lousada, J., Terhes, C., Bernabeu, M., Bauer, W.: Target selection and comparison of mission design for space debris removal by DLR’s advanced study group. Acta Astronaut. 102, 241-248 (2014) · doi:10.1016/j.actaastro.2014.06.020
[36] Visco, M., Lucchesi, D.M.: The LArase Satellites Spin mOdel Solutions (LASSOS): a comprehensive model for the spin evolution of the LAGEOS and LARES satellites. ArXiv arXiv:1801.09098 (2018)
[37] Ward, W.R.: Past orientation of the lunar spin axis. Science 183, 377-379 (1975) · doi:10.1126/science.189.4200.377
[38] Yanagisawa, T., Kurosaki, H.: Shape and motion estimate of LEO debris using light curves. Adv. Space Res. 50, 136-145 (2012) · doi:10.1016/j.asr.2012.03.021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.