×

New numerical results for the optimization of Neumann eigenvalues. (English) Zbl 1448.65275

Constanda, Christian (ed.), Computational and analytic methods in science and engineering. Selected papers based on the presentations at the 19th international conference on computational and mathematical methods in science and engineering, CMMSE’19, Rota, Spain, June 30 – July 6, 2019. Cham: Birkhäuser. 1-20 (2020).
Summary: We present new numerical results for shape optimization problems of interior Neumann eigenvalues. This field is not well understood from a theoretical standpoint. The existence of shape maximizers is not proven beyond the first two eigenvalues, so we study the problem numerically. We describe a method to compute the eigenvalues for a given shape that combines the boundary element method with an algorithm for nonlinear eigenvalues. As numerical optimization requires many such evaluations, we put a focus on the efficiency of the method and the implemented routine. The method is well suited for parallelization. Using the resulting fast routines and a specialized parametrization of the shapes, we found improved maxima for several eigenvalues.
For the entire collection see [Zbl 1446.74005].

MSC:

65R15 Numerical methods for eigenvalue problems in integral equations
65K10 Numerical optimization and variational techniques
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs

Software:

Algorithm 644; GSL
Full Text: DOI

References:

[1] Amos, D.E.: Algorithm 644: a portable package for Bessel functions of a complex argument and nonnegative order. ACM Trans. Math. Softw. 12(3), 265-273 (1986) · Zbl 0613.65013 · doi:10.1145/7921.214331
[2] Antunes, P.R.S., Freitas, P.: Numerical optimization of low eigenvalues of the Dirichlet and Neumann Laplacians. J. Optim. Theory Appl. 154, 235-257 (2012) · Zbl 1252.90076 · doi:10.1007/s10957-011-9983-3
[3] Antunes, P.R.S., Oudet, E.: Numerical results for extremal problem for eigenvalues of the Laplacian. In: Henrot, A. (ed.) Shape Optimization and Spectral Theory, pp. 398-412. De Gruyter, Warzow/Berlin (2017) · Zbl 1373.49049
[4] Beyn, W.-J.: An integral method for solving nonlinear eigenvalue problems. Linear Algebra Appl. 436, 3839-3863 (2012) · Zbl 1237.65035 · doi:10.1016/j.laa.2011.03.030
[5] Colton, D., Kress, R.: Integral Equation Methods in Scattering Theory (Wiley, New York, 1983) · Zbl 0522.35001
[6] Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, New York (2013) · Zbl 1266.35121 · doi:10.1007/978-1-4614-4942-3
[7] Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M., Rossi, F.: GNU Scientific Library Reference Manual, 3rd edn. Network Theory Ltd., Bristol (2009)
[8] Girouard, A., Nadirashvili, N., Polterovich, I.: Maximization of the second positive Neumann eigenvalue for planar domains. J. Differ. Geom. 83, 637-662 (2009) · Zbl 1186.35120 · doi:10.4310/jdg/1264601037
[9] Jülich Supercomputing Centre: JURECA: Modular supercomputer at Jülich Supercomputing Centre. J. Large-Scale Res. Facil. 4, A132 (2018)
[10] Kleefeld, A.: Shape optimization for interior Neumann and transmission eigenvalues. In: Constanda, C., Harris, P. (eds.) Integral Methods in Science and Engineering, pp. 185-196. Birkhäuser, Cham (2019) · Zbl 1467.49035 · doi:10.1007/978-3-030-16077-7_15
[11] Poliquin, G., Roy-Fortin, G.: Wolf-Keller theorem for Neumann eigenvalues. Ann. Sci. Math. Québec 36, 169-178 (2012) · Zbl 1292.35180
[12] Szegö, G.: Inequalities for certain eigenvalues of a membrane of given area. Arch. Ration. Mech. Anal. 3, 343-356 (1954) · Zbl 0055.08802
[13] Weinberger, H.F.: An isoperimetric inequality for the N-dimensional free membrane problem. Arch. Ration. Mech. Anal. 5, 633-636 (1956) · Zbl 0071.09902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.