×

Neural ring homomorphisms and maps between neural codes. (English) Zbl 1448.62214

Baas, Nils (ed.) et al., Topological data analysis. Proceedings of the Abel symposium 2018, Geiranger, Norway, June 4–8, 2018. Cham: Springer. Abel Symp. 15, 163-180 (2020).
Summary: Neural codes are binary codes that are used for information processing and representation in the brain. In previous work, we have shown how an algebraic structure, called the neural ring, can be used to efficiently encode geometric and combinatorial properties of a neural code [the first author et al., Bull. Math. Biol. 75, No. 9, 1571–1611 (2013; Zbl 1311.92043)]. In this work, we consider maps between neural codes and the associated homomorphisms of their neural rings. In order to ensure that these maps are meaningful and preserve relevant structure, we find that we need additional constraints on the ring homomorphisms. This motivates us to define neural ring homomorphisms. Our main results characterize all code maps corresponding to neural ring homomorphisms as compositions of five elementary code maps. As an application, we find that neural ring homomorphisms behave nicely with respect to convexity. In particular, if \(\mathcal C\) and \(\mathcal D\) are convex codes, the existence of a surjective code map \(\mathcal C\rightarrow \mathcal D\) with a corresponding neural ring homomorphism implies that the minimal embedding dimensions satisfy \(d(\mathcal D) \leq d(\mathcal C)\).
For the entire collection see [Zbl 1448.62008].

MSC:

62R40 Topological data analysis
55N31 Persistent homology and applications, topological data analysis
62P10 Applications of statistics to biology and medical sciences; meta analysis

Citations:

Zbl 1311.92043

References:

[1] Cox, D., Little, J., O’Shea, D.: Ideals, varieties, and algorithms, second edn. Undergraduate Texts in Mathematics. Springer-Verlag, New York (1997). An introduction to computational algebraic geometry and commutative algebra
[2] Cruz, J., Giusti, C., Itskov, V., Kronholm, W.: On open and closed convex codes. Discrete and Computational Geometry 61(2), 247-270 (2019) · Zbl 1407.92031 · doi:10.1007/s00454-018-00050-1
[3] Curto, C.: What can topology tells us about the neural code? Bulletin of the AMS 54(1), 63-78 (2017) · Zbl 1353.92027 · doi:10.1090/bull/1554
[4] Curto, C., Gross, E., Jeffries, J., Morrison, K., Omar, M., Rosen, Z., Shiu, A., Youngs, N.: What makes a neural code convex? SIAM Journal on Applied Algebra and Geometry 1(1), 222-238 (2017) · Zbl 1362.92012 · doi:10.1137/16M1073170
[5] Curto, C., Gross, E., Jeffries, J., Morrison, K., Rosen, Z., Shiu, A., Youngs, N.: Algebraic signatures of convex and non-convex codes. Journal of Pure and Applied Algebra (2018) · Zbl 1415.92044
[6] Curto, C., Itskov, V.: Cell groups reveal structure of stimulus space. PLoS Computational Biology 4(10) (2008)
[7] Curto, C., Itskov, V., Morrison, K., Roth, Z., Walker, J.: Combinatorial neural codes from a mathematical coding theory perspective. Neural computation 25(7), 1891-1925 (2013) · Zbl 1448.94290 · doi:10.1162/NECO_a_00459
[8] Curto, C., Itskov, V., Veliz-Cuba, A., Youngs, N.: The neural ring : an algebraic tool for analyzing the intrinsic structure of neural codes. Bulletin of Mathematical Biology 75(9) (2013) · Zbl 1311.92043
[9] Danzer, L., Grünbaum, B., Klee, V.: Helly’s theorem and its relatives. In: Proc. Sympos. Pure Math., Vol. VII, pp. 101-180. Amer. Math. Soc., Providence, R.I. (1963) · Zbl 0132.17401
[10] Giusti, C., Itskov, V.: A no-go theorem for one-layer feedforward networks. Neural Computation 26(11), 2527-2540 (2014) · Zbl 1416.92012 · doi:10.1162/NECO_a_00657
[11] Hubel, D.H., Wiesel, T.: Receptive fields of single neurons in the cat’s striate cortex. Journal of Physiology 148(3), 574-591 (1959) · doi:10.1113/jphysiol.1959.sp006308
[12] Jeffs, R.A., Omar, M., Youngs, N.: Neural ideal preserving homomorphisms. J. Pure and Applied Algebra 222(11), 3470-3482 (2018) · Zbl 1429.94086 · doi:10.1016/j.jpaa.2017.12.018
[13] Lienkaemper, C., Shiu, A., Woodstock, Z.: Obstructions to convexity in neural codes. Adv. Appl. Math. 85, 31-59 (2017) · Zbl 1353.05132 · doi:10.1016/j.aam.2016.11.006
[14] O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map. preliminary evidence from unit activity in the freely-moving rat. Brain Research 34(1), 171-175 (1971)
[15] Osborne, L., Palmer, S., Lisberger, S., Bialek, W.: The neural basis for combinatorial coding in a cortical population response. Journal of Neuroscience 28(50), 13522-13531 (2008) · doi:10.1523/JNEUROSCI.4390-08.2008
[16] Schneidman, E., Puchalla, J., Segev, R., Harris, R., Bialek, W., Berry II, M.: Synergy from silence in a combinatorial neural code. J. Neuroscience 31(44), 15732-15741 (2011) · doi:10.1523/JNEUROSCI.0301-09.2011
[17] Yartsev, M. · doi:10.1126/science.1235338
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.