×

Generalized negative binomial distributions as mixed geometric laws and related limit theorems. (English) Zbl 1448.60044

The authors study analytic properties of the so called generalized negative binomial (GNB) distribution \[ P(N_{r,\alpha,\mu}=k)=\int_0^\infty \frac{z^k}{k!}e^{-z}g^*(z;r,\alpha,\mu)dz, \quad k=0,1,2,\dots,\ r>0,\ \alpha\in \mathbb{R},\ \mu>0, \] where \[ g^*(x;r,\alpha,\lambda)=\frac{|\alpha| \lambda^r}{\Gamma(r)}x^{\alpha r-1}e^{-\lambda x^\alpha},\quad x\geq0,\ \alpha\in \mathbb{R},\ \lambda>0,\ r>0, \] is the density of the generalized gamma (GG) distribution, first described as a unitary family by E. Stacy [Ann. Math. Stat. 33, 1187–1192 (1962; Zbl 0121.36802)]. The authors show that the GG distribution is a mixed exponential distribution if and only if the shape and exponent power parameters are no greater than one. They write the mixing distribution explicitly as a scale mixture of strictly stable laws concentrated on the nonnegative half-line. As a corollary, a representation follows of the GNB distribution as a mixed geometric distribution. They also consider the corresponding scheme of Bernoulli trials with random probability of success, and they prove a random analog of the Poisson theorem establishing the convergence of mixed binomial distributions to mixed Poisson laws.
The authors prove limit theorems for random sums of independent random variables in which the number of summands has the GNB distribution and the summands have both light and heavy-tailed distributions. Various representations for the limit laws are obtained in terms of mixtures of Mittag-Leffler, Linnik, or Laplace distributions. It is stated explicitly in the paper that the GG distribution contains almost all the absolutely continuous distributions concentrated on the non-negative half-line, and, hence, the GNB distribution is a very flexible and potentially most applicable family of discrete distributions. Applications of the GNB distribution in meteorology are discussed.

MSC:

60E07 Infinitely divisible distributions; stable distributions
60F05 Central limit and other weak theorems

Citations:

Zbl 0121.36802

References:

[1] V.E. Bening and V.Yu. Korolev, Generalized Poisson Models and Their Applications in Insurance and Finance, VSP, Utrecht, 2002. · Zbl 1041.60004
[2] V.E. Bening and V.Yu. Korolev, On an application of the Student distribution in the theory of probability and mathematical statistics, Theory Probab. Appl., 49(3):377-391, 2005. · Zbl 1089.62001
[3] S.N. Bernstein, Sur les fonctions absolument monotones, Acta Math., 52:1-66, 1928, available from: https://doi.org/https://doi.org/10.1007/BF02592679. · JFM 55.0142.07
[4] L. Bondesson, A general result on infinite divisibility, Ann. Probab., 7(6):965-979, 1979. · Zbl 0421.60014
[5] J. Bunge, Compositions semigroups and random stability, Ann. Probab., 24:1476-1489, 1996. · Zbl 0881.60013
[6] L. Devroye, A note on Linnik’s distribution, Stat. Probab. Lett., 9:305-306, 1990. · Zbl 0698.60019
[7] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, Wiley, New York, 1971. · Zbl 0219.60003
[8] L.J. Gleser, The gamma distribution as a mixture of exponential distributions, Am. Stat., 43:115-117, 1989.
[9] B.V. Gnedenko and V.Yu. Korolev, Random Summation: Limit Theorems and Applications, CRC Press, Boca Raton, FL, 1996. · Zbl 0857.60002
[10] B.V. Gnedenko and I.N. Kovalenko, Introduction to Queueing Theory, Israel Program for Scientific Translations, Jerusalem, 1968. · Zbl 0186.24502
[11] B.V. Gnedenko and I.N. Kovalenko, Introduction to Queueing Theory, 2nd ed., Birkhäuser, Boston, MA, 1989.
[12] C.M. Goldie, A class of infinitely divisible distributions, Math. Proc. Camb. Philos. Soc., 63:1141-1143, 1967. · Zbl 0189.51701
[13] R. Gorenflo, A.A. Kilbas, F. Mainard, and S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer, Berlin, New York, 2014. · Zbl 1309.33001
[14] R. Gorenflo and F. Mainardi, Continuous time random walk, Mittag-Leffler waiting time and fractional diffusion: Mathematical aspects, in R. Klages, G. Radons, and I.M. Sokolov (Eds.), Anomalous Transport: Foundations and Applications,Wiley-VCH, Weinheim, 2008, pp. 93-127, arXiv:0705.0797.
[15] J. Grandell, Doubly Stochastic Poisson Processes, Lect. Notes Math., Vol. 529, Springer, Berlin, Heidelberg, New York, 1976. · Zbl 0339.60053
[16] J. Grandell, Mixed Poisson Processes, Chapman & Hall, London, 1997. · Zbl 0922.60005
[17] M. Greenwood and G.U. Yule, An inquiry into the nature of frequency-distributions of multiple happenings, with particular reference to the occurrence of multiple attacks of disease or repeated accidents, J. R. Stat. Soc., Ser. A, 83(2):255-279, 1920.
[18] V.V. Kalashnikov, Geometric Sums: Bounds for Rare Events with Applications, Kluwer Academic, Dordrecht, 1997. · Zbl 0881.60043
[19] J.F.C. Kingman, Poisson Processes, Clarendon Press, Oxford, 1993. · Zbl 0771.60001
[20] L.B. Klebanov and S.T. Rachev, Sums of a random number of random variables and their approximations with ε-accompanying infinitely divisible laws, Serdica, 22:471-498, 1996. · Zbl 0939.60003
[21] V.Yu. Korolev, Convergence of random sequences with independent random indices. I, Theory Probab. Appl., 39(2): 313-333, 1994. · Zbl 0837.60018
[22] V.Yu. Korolev, Convergence of random sequences with independent random indices. II, Theory Probab. Appl., 40(4): 907-910, 1995. · Zbl 0863.60022
[23] V.Yu. Korolev, A general theorem on the limit behavior of superpositions of independent random processes with applications to Cox processes, J. Math. Sci., New York, 81(5):2951-2956, 1996. · Zbl 0870.60048
[24] V.Yu. Korolev, On convergence of distributions of compound Cox processes to stable laws, Theory Probab. Appl., 43(4):644-650, 1998. · Zbl 0944.60054
[25] V.Yu. Korolev, Limit distributions for doubly stochastically rarefied renewal processes and their properties, Theory Probab. Appl., 61(4):1-22, 2016.
[26] V.Yu. Korolev, Product representations for random variables with the Weibull distributions and their applications, J. Math. Sci., New York, 218(3):298-313, 2016. · Zbl 1387.60024
[27] V.Yu. Korolev, Analogs of Gleser’s theorem for negative binomial and generalized gamma distributions and some their applications, Informatics and Applications, 11(3):2-17, 2017.
[28] V.Yu. Korolev, V.E. Bening, and S.Ya. Shorgin, Mathematical Foundations of Risk Theory, 2nd ed., Fizmatlit, Moscow, 2011 (in Russian). · Zbl 1234.60004
[29] V.Yu. Korolev, A.V. Chertok, A.Yu. Korchagin, and A.I. Zeifman, Modeling high-frequency order flow imbalance by functional limit theorems for two-sided risk processes, Appl. Math. Comput., 253:224-241, 2015. · Zbl 1338.91077
[30] Korolev, VY; Gorshenin, AK; Gulev, SK; Belyaev, KP; Grusho, AA; Simos, T. (ed.), Statistical analysis of precipitation events, No. 1863, 090011 (2017), New York
[31] V.Yu. Korolev, A.Yu. Korchagin, and A.I. Zeifman, The Poisson theorem for Bernoulli trials with a random probability of success and a discrete analog of the Weibull distribution, Informatics and Applications, 10(4):11-20, 2016.
[32] Korolev, VY; Korchagin, AY; Zeifman, AI; Simos, T. (ed.), On doubly stochastic rarefaction of renewal processes, No. 1863, 090010 (2017), New York
[33] V.Yu. Korolev and N.N. Skvortsova (Eds.), StochasticModels of Structural Plasma Turbulence, VSP, Utrecht, 2006. · Zbl 1089.76004
[34] V.Yu. Korolev and A.I. Zeifman, Convergence of statistics constructed from samples with random sizes to the Linnik and Mittag-Leffler distributions and their generalizations, J. Korean Stat. Soc., 46(2):161-181, 2017. · Zbl 1371.60042
[35] V.Yu. Korolev and A.I. Zeifman, A note on mixture representations for the Linnik and Mittag-Leffler distributions and their applications, J. Math. Sci., New York, 218(3):314-327, 2017. · Zbl 1387.60025
[36] S. Kotz, T.J. Kozubowski, and K. Podgorski, The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance, Birkhäuser, Boston, MA, 2001. · Zbl 0977.62003
[37] S. Kotz and I.V. Ostrovskii, A mixture representation of the Linnik distribution, Stat. Probab. Lett., 26:61-64, 1996. · Zbl 0848.60017
[38] S. Kotz, I.V. Ostrovskii, and A. Hayfavi, Analytic and asymptotic properties of Linnik’s probability densities. I, J. Math. Anal. Appl., 193:353-371, 1995. · Zbl 0831.60020
[39] S. Kotz, I.V. Ostrovskii, and A. Hayfavi, Analytic and asymptotic properties of Linnik’s probability densities. II, J. Math. Anal. Appl., 193:497-521, 1995. · Zbl 0831.60021
[40] I.N. Kovalenko, On the class of limit distributions for rarefied flows of homogeneous events, Litov. Mat. Sb., 5(4): 569-573, 1965. · Zbl 0202.47105
[41] T.J. Kozubowski, Fractional moment estimation of Linnik and Mittag-Leffler parameters, Math. Comput. Modelling, 34:1023-1035, 2001. · Zbl 1003.62018
[42] R.G. Laha, On a class of unimodal distributions, Proc. Am. Math. Soc., 12:181-184, 1961. · Zbl 0096.34103
[43] Yu.V. Linnik, Linear forms and statistical criteria. I, II, Sel. Transl. Math. Stat. Probab., 3:41-90, 1963. Translated from Ukr. Mat. Zh., 5:207-243, 247-290, 1953. · Zbl 0052.36701
[44] R.N. Pillai, Semi-α-Laplace distributions, Commun. Stat., Theory Methods, 14:991-1000, 1985. · Zbl 0576.62020
[45] R.N. Pillai, Harmonic mixtures and geometric infinite divisibility, Stat. Methodol., 28:87-98, 1990.
[46] R.N. Pillai, On Mittag-Leffler functions and related distributions, Ann. Inst. Stat. Math., 42:157-161, 1990. · Zbl 0714.60009
[47] Schneider, WR; Albeverio, S. (ed.); Casati, G. (ed.); Merlini, D. (ed.), Stable distributions: Fox function representationand generalization, 497-511 (1986), Berlin · Zbl 0615.60016
[48] D.N. Shanbhag and M. Sreehari, On certain self-decomposable distributions, Z. Wahrscheinlichkeitstheor. Verw. Geb., 38:217-222, 1977. · Zbl 0353.60025
[49] H.S. Sichel, On a family of discrete distributions particularly suited to represent long tailed frequency data, in N.F. Laubscher (Ed.), Proceedings of the 3rd Symposium on Mathematical Statistics, CSIR, Pretoria, 1971, pp. 51-97. · Zbl 0274.60012
[50] E.W. Stacy, A generalization of the gamma distribution, Ann. Math. Stat., 33:1187-1192, 1962. · Zbl 0121.36802
[51] F.W. Steutel and K. van Harn, Infinite Divisibility of Probability Distributions on the Real Line, Marcel Dekker, New York, 2004. · Zbl 1063.60001
[52] H. Tucker, On moments of distribution functions attracted to stable laws, Houston J. Math., 1(1):149-152, 1975. · Zbl 0316.60013
[53] V.V. Uchaikin and V.M. Zolotarev, Chance and Stability, VSP, Utrecht, 1999. · Zbl 0944.60006
[54] K. Weron and M. Kotulski, On the Cole-Cole relaxation function and related Mittag-Leffler distributions, Physica A, 232:180-188, 1996.
[55] L.M. Zaks and V.Yu. Korolev, Variance-generalized-gamma-distributions as limit laws for random sums, Inform. Primen., 7(1):105-115, 2013 (in Russian).
[56] O. Zolina, C. Simmer, K. Belyaev, S. Gulev, and P. Koltermann, Changes in the duration of European wet and dry spells during the last 60 years, J. Climate, 26:2022-2047, 2013.
[57] V.M. Zolotarev, One-Dimensional Stable Distributions, AMS, Providence, RI, 1986. · Zbl 0589.60015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.